用户名: 密码: 验证码:
Topology optimization method of lattice structures based on a genetic algorithm
详细信息    查看全文
文摘
A two-stage topology optimization method of lattice structures based on a genetic algorithm is proposed. The first stage is the form-finding analysis of lattice structures, and the optimal initial shape was achieved with the numerical inverse hanging method. The second stage is the topology optimization of single-layer lattice structures, which can be realized by changing the mesh size and the tube configurations to minimize the total weight of steel tubes subject to the design requirements. The mesh configuration optimization is realized through the adjustment of the nodal horizontal co-ordinates and the removal of tubes with lower stress. The maximum displacement of the structure, the maximum stress of the circular steel tubes, and the nonlinear buckling load are the state variables, and a genetic algorithm (GA) is the optimization algorithm. Different stress-limiting values used to delete the tubes were discussed. The numerical examples show that the two-stage topology optimization method for lattice structures proposed in this paper is correct and efficient. Furthermore, the forms of the optimized structure are rich, and the structure is lightweight and efficient.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700