用户名: 密码: 验证码:
Engineering cellulose nanofibre suspensions to control filtration resistance and sheet permeability
详细信息    查看全文
  • 作者:Qing Li ; Praveena Raj ; Fatema Abbas Husain ; Swambabu Varanasi ; Tom Rainey…
  • 关键词:Cellulose nanofibre ; Gel point ; CPAM ; PEI ; Dewatering ; Permeability ; Polyelectrolyte
  • 刊名:Cellulose
  • 出版年:2016
  • 出版时间:February 2016
  • 年:2016
  • 卷:23
  • 期:1
  • 页码:391-402
  • 全文大小:829 KB
  • 参考文献:Ek M, Gellerstedt G, Henriksson G (2009) Paper products physics and technology. Walter de Gruyter, BerlinCrossRef
    Fukuzumi H, Saito T, Iwata T, Kumamoto Y, Isogai A (2008) Transparent and high gas barrier films of cellulose nanofibers prepared by TEMPO-mediated oxidation. Biomacromolecules 10(1):162–165. doi:10.​1021/​bm801065u CrossRef
    Hubbe MA, Venditti RA, Rojas OJ (2007) Review of factors affecting the release of water from cellulosic fibers during paper manufacturer. BioResources 2(3):500–533
    Landman KA, White LR, Buscall R (1988) The continuous-flow gravity thickener: steady state behavior. AIChE J 34(2):239–252. doi:10.​1002/​aic.​690340208 CrossRef
    Lowys M-P, Desbrieres J, Rinaudo M (2000) Rheological characterization of cellulosic microfibril suspensions. Role of polymeric additives. Food Hydrocoll 15:25–32CrossRef
    Lu J, Askeland P, Drzal LT (2008) Surface modification of microfibrillated cellulose for epoxy composite applications. Polymer 49(5):1285–1296. doi:10.​1016/​j.​polymer.​2008.​01.​028 CrossRef
    Martinez DM, Buckley K, Jivan S, Lindstrom A, Thiruvengadaswamy R, Olson JA, Ruth TJ, Kerekes RJ (2001) Characterizing the mobility of papermaking fibres during sedimentation. In: 12th fundamental research symposium. The science of papermaking, pp 225–254
    Mosse WKJ, Boger DV, Simon GP, Garnier G (2012) Effect of cationic polyacrylamides on the interactions between cellulose fibers. Langmuir 28(7):3641–3649. doi:10.​1021/​la2049579 CrossRef
    Nakagaito AN, Yano H (2005) Novel high-strength biocomposites based on microfibrillated cellulose having nano-order-unit web-like network structure. Appl Phys A 80(1):155–159. doi:10.​1007/​s00339-003-2225-2 CrossRef
    Nanko H, Pan S (2003) Visualization of polymer adsorption on pulp fiber: polyacrylamide. In: Proceedings of 2003 TAPPI spring technical conference, Chicago, IL
    Nasser MS, James AE (2006) The effect of polyacrylamide charge density and molecular weight on the flocculation and sedimentation behaviour of kaolinite suspensions. Sep Purif Technol 52(2):241–252. doi:10.​1016/​j.​seppur.​2006.​04.​005 CrossRef
    Nasser MS, James AE (2007) Effect of polyacrylamide polymers on floc size and rheological behaviour of kaolinite suspensions. Colloids Surf, A 301(1–3):311–322. doi:10.​1016/​j.​colsurfa.​2006.​12.​080 CrossRef
    Rainey TJ, Doherty WOS, Martinez DM, Brown RJ, Dickson A (2010a) The effect of flocculants on the filtration of bagasse pulp pads. Tappi J, pp 7–14
    Rainey TJ, Moghaddam L, Doherty WOS (2010b) The effect of flocculants, shear, vacuum and depithing on the formation of thin bagasse pulp pads. Nord Pulp Pap Res J 25(4):434–440. doi:10.​3183/​NPPRJ-2010-25-04-p434-440 CrossRef
    Rainey T, Doherty WS, Martinez DM, Brown R, Kelson N (2011) Pressure filtration of Australian bagasse pulp. Transp Porous Med 86(3):737–751. doi:10.​1007/​s11242-010-9649-x CrossRef
    Raj P, Varanasi S, Batchelor W, Garnier G (2015) Effect of cationic polyacrylamide on the processing and properties of nanocellulose films. J Colloid Interface Sci 447:113–119. doi:10.​1016/​j.​jcis.​2015.​01.​019 CrossRef
    Sakurada I, Nukushina Y, Ito T (1962) Experimental determination of the elastic modulus of crystalline regions in oriented polymers. J Polym Sci 57(165):651–660. doi:10.​1002/​pol.​1962.​1205716551 CrossRef
    Sehaqui H, Liu A, Zhou Q, Berglund LA (2010) Fast preparation procedure for large, flat cellulose and cellulose/inorganic nanopaper structures. Biomacromolecules 11(9):2195–2198. doi:10.​1021/​bm100490s CrossRef
    Siró I, Plackett D (2010) Microfibrillated cellulose and new nanocomposite materials: a review. Cellulose 17(3):459–494. doi:10.​1007/​s10570-010-9405-y CrossRef
    Syverud K, Stenius P (2009) Strength and barrier properties of MFC films. Cellulose 16(1):75–85. doi:10.​1007/​s10570-008-9244-2 CrossRef
    Turbak AF, Snyder FW, Sandberg KR (1983) Microfibrillated cellulose, a new cellulose product: properties, uses, and commercial potential. J Appl Polym Sci: Appl Polym Symp 37:815–827
    Varanasi S, Batchelor W (2014) Superior non-woven sheet forming characteristics of low-density cationic polymer–cellulose nanofibre colloids. Cellulose 21(5):3541–3550. doi:10.​1007/​s10570-014-0370-8 CrossRef
    Varanasi S, He R, Batchelor W (2013) Estimation of cellulose nanofibre aspect ratio from measurements of fibre suspension gel point. Cellulose 20(4):1885–1896. doi:10.​1007/​s10570-013-9972-9 CrossRef
    Vesterinen A, Seppala J (2008) Rheological study of microfibrillar cellulose and dynamic mechanical analysis of paper sheet. Annu Trans Nord Rheol Soc 16:259–262
    Zhang L, Batchelor W, Varanasi S, Tsuzuki T, Wang X (2012) Effect of cellulose nanofiber dimensions on sheet forming through filtration. Cellulose 19(2):561–574. doi:10.​1007/​s10570-011-9641-9 CrossRef
    Zhu H, Fang Z, Preston C, Li Y, Hu L (2014) Transparent paper: fabrications, properties, and device applications. Energy Environ Sci. doi:10.​1039/​C3EE43024C
  • 作者单位:Qing Li (1)
    Praveena Raj (1)
    Fatema Abbas Husain (1)
    Swambabu Varanasi (1)
    Tom Rainey (2)
    Gil Garnier (1)
    Warren Batchelor (1)

    1. BioResource Processing Research Institute of Australia (BioPRIA), Department of Chemical Engineering, Monash University, Clayton, VIC, 3800, Australia
    2. School of Chemistry, Physics and Mechanical Engineering, Queensland University of Technology, Brisbane, QLD, 4000, Australia
  • 刊物类别:Chemistry and Materials Science
  • 刊物主题:Chemistry
    Bioorganic Chemistry
    Physical Chemistry
    Organic Chemistry
    Polymer Sciences
  • 出版者:Springer Netherlands
  • ISSN:1572-882X
文摘
This study examines and quantifies the effect of adding polyelectrolytes to cellulose nanofibre suspensions on the gel point of cellulose nanofibre suspensions, which is the lowest solids concentration at which the suspension forms a continuous network. The lower the gel point, the faster the drainage time to produce a sheet and the higher the porosity of the final sheet formed. Two new techniques were designed to measure the dynamic compressibility and the drainability of nanocellulose–polyelectrolyte suspensions. We developed a master curve which showed that the independent variable controlling the behaviour of nanocellulose suspensions and its composite is the structure of the flocculated suspension which is best quantified as the gel point. This was independent of the type of polyelectrolyte used. At an addition level of 2 mg/g of nanofibre, a reduction in gel point over 50 % was achieved using either a high molecular weight (13 MDa) linear cationic polyacrylamide (CPAM, 40 % charge), a dendrimer polyethylenimine of high molecular weight of 750,000 Da (HPEI) or even a low molecular weight of 2000 Da (LPEI). There was no significant difference in the minimum gel point achieved, despite the difference in polyelectrolyte morphology and molecular weight. In this paper, we show that the gel point controls the flow through the fibre suspension, even when comparing fibre suspensions with solids content above the gel point. A lower gel point makes it easier for water to drain through the fibre network, reducing the pressure required to achieve a given dewatering rate and reducing the filtering time required to form a wet laid sheet. We further show that the lower gel point partially controls the structure of the wet laid sheet after it is dried. Halving the gel point increased the air permeability of the dry sheet by 37, 46 and 25 %, when using CPAM, HPEI and LPEI, respectively. The resistance to liquid flow was reduced by 74 and 90 %, when using CPAM and LPEI. Analysing the paper formed shows that sheet forming process and final sheet properties can be engineered and controlled by adding polyelectrolytes to the nanofibre suspension. Keywords Cellulose nanofibre Gel point CPAM PEI Dewatering Permeability Polyelectrolyte

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700