用户名: 密码: 验证码:
Single Chemosensor for Double Analytes: Spectrophotometric Sensing of Cu2+ and Fluorogenic Sensing of Al3+ Under Aqueous Conditions
详细信息    查看全文
  • 作者:Jie Yang ; Ze-li Yuan ; Guang-qing Yu ; Shun-li He ; Qing-hong Hu…
  • 关键词:Chemosensor ; Al3+ ion ; Cu2+ ion ; Synthesis ; DFT calculations
  • 刊名:Journal of Fluorescence
  • 出版年:2016
  • 出版时间:January 2016
  • 年:2016
  • 卷:26
  • 期:1
  • 页码:43-51
  • 全文大小:2,545 KB
  • 参考文献:1.Wang ML, Meng GW, Huang Q (2014) Iodeosin-based fluorescent and colorimetric sensing for Ag+, Hg2+, Fe3+, and further for halide ions in aqueous solution. RSC Adv 4:8055–8058CrossRef
    2.Wang M, Liu XM, Lu HZ, Wang HM (2015) Z.H. Qin.: highly selective and reversible chemosensor for Pd2+ detected by fluorescence, colorimetry, and test paper. Appl. Mater. Interfaces 7:1284–1289
    3.Maity SB, Banerjee S, Sunwoo K, Kim JS, Bharadwaj PK (2015) A Fluorescent Chemosensor for Hg2+ and Cd2+ Ions in Aqueous Medium under Physiological pH and Its Applications in Imaging Living Cells. Inorg Chem 54:3929–3936PubMed CrossRef
    4.Çağlar Y, Gümrükçüoğlu N, Saka ET, Ocak M, Kantekin H, Ümmühan O (2012) Phthalocyanine -based fluorescent chemosensor for the sensing of Zn (II) in dimethyl sulfoxide-acetonitrile. J Incl Phenom Macrocycl Chem 72:443–447CrossRef
    5.Costero AM, Andreu R, Martínez-Máñez R, Sancenón F, Soto J (2003) A fluorescen chemo-sensor able to distinguish between ionic and covalent mercury compounds. J Incl Phenom Macrocycl Chem 46:121–124CrossRef
    6.Erdemir S, Kocyigit O, Malkondu S (2015) Fluorogenic recognition of Zn2+, Al3+ and F− ions by a new multi-analyte chemosensor based bisphenol a-quinoline. Fluoride 25:719–727CrossRef
    7.Perl DP (1980) A. R. Brody.: Alzheimer’s disease: X-ray spectrometric evidence of aluminum accumulation in neurofibrillary tangle-bearing neurons. Science 208:297–299PubMed CrossRef
    8.Mittal SK, Sharma R, Sharma M, Singh N, Singh J, Kaur N, Chhibber M (2014) Voltam -metry of nanoparticle-coupled imine linkage-based receptors for sensing of Al(III) and Co(II) ions. J Appl Electrochem 49:1239–1251CrossRef
    9.Hatai J, Samanta M, Krishna VSR, Pal S, Bandyopadhyay S (2013) The importance of water exclusion: an effective design strategy for detection of Al3+ ions with high sensitivity. RSC Adv 3:22572–22579CrossRef
    10.Lee SA, You GR, Choi YW, Jo HY, Kim AR, Kim INS-J, Kim Y Kim C (2014) A new multifunctional Schiff base as a fluorescence sensor for Al3+ and a colorimetric sensor for CN− in aqueous media: an application to bioimaging. Dalton Trans 43:6650–6659
    11.Li TR, Fang R B.D Wang, Y.L. Shao, J. Liu, S.T. Zhang, Z.Y. Yang (2014) Simple coumarin as a turn-on fluorescence sensor for Al(III) ions. Dalton Trans 43:2741–2743
    12.Kumar J, Sarma MJ, Phukan P (2015) D. K. Das.: a new simple Schiff base fluorescence “on” sensor for Al3+ and its living cell imaging. Dalton Trans 44:4576–4581PubMed CrossRef
    13.Yang MP, Meng WF, Liu XJ, Su N, Zhou J, Yang BQ (2014) The importance of water exclusion: an effective design strategy for detection of Al3+ ions with high sensitivity A selective colorimetric and fluorescent chemosensor for Cu2+ in living cells. RSC Adv 4:22288–22293CrossRef
    14.Sarkar D, Pramanik AK, Mondal TK (2015) A novel coumarin based molecular switch for dual sensing of Zn(II) and Cu(II). RSC Adv 5:7647–7653CrossRef
    15.Huang CY, Jhong Y, Chir JL, Wu AT (2014) A quinoline derivative as an efficient sensor to detect selectively Al3+ ion. J Fluoresc 24:991–994PubMed CrossRef
    16.Anbu S, Ravishankaran R, Silva MFCG, Karande AA, Pombeiro AJL (2014) A. J. L. Pombeiro.: differentially selective chemosensor with fluorescence off–on responses on Cu2+ and Zn2+ ions in aqueous media and applications in pyrophosphate sensing, live cell imaging, and cytotoxicity. Inorg Chem 53:6655–6664PubMed CrossRef
    17.Mashraqui SH, Khan T, Chandiramani M, Betkar R, Poonia K (2010) Anthracene -tethered aminomethyl oxadiazole chemosensor: a probe offering selective chromo- and fluorogenic signalings for targeting Cu(II). J Incl Phenom Macrocycl Chem 67:361–367CrossRef
    18.Rossi L, Lombardo M, Ciriolo M (2004) G. Rotilio.: mitochondrial dysfunction in neuro -degenerative diseases associated with copper imbalance. Neurochem Res 29:493–504PubMed CrossRef
    19.Gou C, Qin SH, Wu HQ, Wang Y, Luo J (2011) X.Y. Liu.: a highly selective chemo -sensor for Cu2+ and Al3+ in two different ways based on salicylaldehyde Schiff. Inorg Chem Commun 14:1622–1625CrossRef
    20.Chen YT, Mi YS, Xie QF, Xiang JN, Hong LF, Luo XB, Xia SR (2013) A new off–on chemosensor for Al3+ and Cu2+ in two different systems based on a rhodamine B derivative. Anal Methods 5:4818–4823CrossRef
    21.Samanta S, Goswami S, Hoque MN, Ramesh A, Das G (2014) An aggregation-induced emission (AIE) active probe renders Al(III) sensing and tracking of subsequent interaction with DNA. Chem Commun 50:11833–11836CrossRef
    22.Kima H, Raoa BA, Jeonga JW, Mallick S, Kang SM, Choi JS, Lee CS, Son YA (2015) A highly selective dual-channel Cu2+ and Al3+ chemodosimeter in aqueous systems: Sensing in living cells and microfluidic flows. Sensors Actuators B Chem 210:173–182CrossRef
    23.Chemate S, Sekar N (2015) Highly sensitive and selective chemosensors for Cu2+ and Al3+ based on photoinduced electron transfer (PET) mechanism. RSC Adv 5:27282–27289CrossRef
    24.Wang JF, Li YB, Patel NG, Zhang G, Zhou D (2014) Y. Pang.: selective photosensiti -zation through an AND logic response: optimization of the pH and glutathione response of activatable photosensitizers. Chem Commun 50:12258–12261CrossRef
    25.Cui MH, Liu Q, Fei Q, Fei YQ, Liu YM, Shan HY, Feng GD, Huan YF (2015) A novel UV-visible chemosensor based on the 8-hydroxyquinoline derivative for copper ion detection. Anal Methods 7:4252–4256CrossRef
    26.A. Kuwar, R. Patil, A. Singh, S. K. Sahoo, J. Marekd, N. Singh (2015) A two-in-one dual channel chemosensor for Fe3+ and Cu2+ with nanomolar detection mimicking the IMPLICATION logic gate. J Mater Chem C, 3, 453–460
    27.Hu QP, Liu YL, Li ZQ, Wen RZ, Gao YA, Bei YL Zhu Z (2014) A new rhodamine -based dual chemosensor for Al3+ and Cu2+. Tetrahedron Lett 55:4912–4916
    28.Karak MD, Lohar S, Sahana A, Guha S, Banerjee A, Da D (2012) An Al3+ induced green luminescent fluorescent probe for cell imaging and naked eye detection. Anal Methods 4,:1906–1908CrossRef
    29.Liao ZC, Yang ZY, Li Y, Wang BD, Zhou QX (2013) A simple structure fluorescent chemosensor for high selectivity and sensitivity of aluminum ions. Dyes Pigments 97:124–128CrossRef
    30.Gao W, Yang YT, Huo FJ, Yin CX, Xu M, Zhang YB J.B Chao, S. Jin, Zhang (2014) An ICT colorimetric chemosensor and a non-ICT fluorescent chemosensor for the detection copper ion. Sensors Actuators B 193(294–300)
    31.Yuan ZL, Yang XQ, Wang L, Huang JD, Wei G (2014) Efficient synthesis of involving nitrogen-oxygen donor macrocyclic compoundsby microwave-assisted witting reaction. RSC Adv 4:42211–42214CrossRef
    32.Z. L. Yuan, X.M. Shen, Huang J D (2015) Syntheses, crystal structures and antimicrobial activities of Cu(II), Ru(II), and Pt(II) compounds with an anthracene-containing tripodal ligand. RSC Adv. 5, 10521–10528
    33.Yuan ZL, Wang L, Shen XM, Huang JD, Wei G (2015) Copper(II) and platinum(II) compounds with pyrene-appended dipicolylamine ligand: syntheses, crystal structures and biological evaluation. J Incl Phenom Macrocycl Chem 82:135–143CrossRef
    34.Lim S, Seo J, Park SY (2006) Photochromic switching of excited-state intramolecular proton-transfer (ESIPT) fluorescence: a unique route to high-contrast memory switching and nondestructive readou. J Am Chem Soc 128:14542–14547PubMed CrossRef
    35.Chen W, Xing Y (2011) Y. Pang A highly selective pyrophosphate sensor based on ESIPT turn-on in water. Org Lett 13:1362–1365PubMed CrossRef
    36.Ameer-Beg S, Ormson SM, Brown RG, Matousek P, Towrie M, Nibbering ETJ, Foggi P (2001) F. V. R. Neuwahl.: ultrafast measurements of excited state intramolecular proton transfer (ESIPT) in room temperature solutions of 3-hydroxyflavone and derivatives. J Phys Chem A 105:3709–3718CrossRef
    37.Kar C, Adhikari MD, Ramesh A Das G (2013) NIR- and FRET-based sensing of Cu2+ and S2− in physiological conditions and in live cells. Inorg Chem 52:743–752
    38.G. J. Park, Y. J. Na, H. Y. Jo, S. A. Lee, A. R. Kim, I. Noh, C. Kim (2014) A single chemosensor for multiple analytes: fluorogenic detection of Zn2+ and OAc− ions in aqueous solution, and an application to bioimaging. New. J. Chem. 38, 2587–2594
    39.Hatai J, Samanta M, Krishna VSR, Pal S, Bandyopadhyay S (2013) The importance of water exclusion: an effective design strategy for detection of Al3+ ions with high sensitivity. RSC Advance 3:22572–22579
    40.Yu F, Zhang W, Li P, Xing Y, Tong L, Ma J Tang B (2009) Cu2+-selective naked-eye and fluorescent probe: its crystal structure and application in bioimaging. Analyst 134:1826–1833
    41.Kim H, Na YJ, Park GJ, Lee JJ, Kim YS, Lee SY, Kim C (2014) A novel selective colorimetric chemosensor for Cu2+ in aqueous solution. Inorg Chim Commun 49:68–71CrossRef
    42.Grynkiewcz G, Poenie M (1985) R. Y. Tsein.: a new generation of Ca2+ indicators with greatly improved fluorescence properties. J Biol Chem 260:3440–3450
    43.Park GJ, Na YJ, Jo HY, Lee SA, Kim C (2014) A colorimetric organic chemo-sensor for Co2+ in a fully aqueous environment. Dalton Trans 43:6618–6622PubMed CrossRef
    44.Han TY, Feng X, Tong B, Shi JB, Chen L, Zhic JG (2012) Y.P. Dong.: a novel “turn -on” fluorescent chemosensor for the selective detection of Al3+ based on aggregation -induced emission. Chem Commun 48:416–418CrossRef
    45.Das S, Sahana A, Banerjee A, Lohar S, Safin DA, Babashkina MG, Bolte M, Garcia Y, Hauli I, Mukhopadhyay SK (2013) D. Das.: ratiometric fluorescence sensing and intracellular imaging of Al3+ ions driven by an intramolecular excimer formation of a pyrimidine–pyrene scaffold. Dalton Trans 42:4757–4763PubMed CrossRef
    46.Tian H, Li B, Zhu JL, Wang HP, Li YR, Xu J, Wang JW, Wang W, Sun ZH, Liu WS, Huang XG, Yan XH, Wang Q, Yao XJ Tang Y (2012) Two selective fluorescent chemosensors for cadmium ions in 99 % aqueous solution: the end group effect on the selectivity, DFT calculations and biological applications. Dalton Trans 41:2060–2065
    47.Li TR, Fang R, Wang BD, Shao YL, Liu J, Zhang ST (2014) Z.Y. Yang.: a simple coumarin as a turn-on fluorescence sensor for Al(III) ions. Dalton Trans 43:2741–2743PubMed CrossRef
    48.Chattopadhyay B, Moirangthem A, Basu A, Marek J Chattopadhyay P (2012) A water soluble Al3+ selective colorimetric and fluorescent turn-on chemosensor and its application in living cell imaging. Analyst 137:3975–3981
    49.Li ZX, Zhao WY, Li XY, Zhu YY, Liu CM, Wang LN, Yu MM, Wei LH, Tang MS, Zhang HY (2012) 1,8-Naphthyridine-Derived Ni2+/Cu2+-Selective Fluorescent Chemosensor with Different Charge Transfer Processses. Inorg Chem 51:12444–12449PubMed CrossRef
  • 作者单位:Jie Yang (1)
    Ze-li Yuan (1)
    Guang-qing Yu (1)
    Shun-li He (1)
    Qing-hong Hu (1)
    Qing Wu (1)
    Bo Jiang (1)
    Gang Wei (2)

    1. School of Pharmacy, Zunyi Medical University, Zunyi, Guizhou, 563003, China
    2. CSIRO Manufacturing Flagship, PO Box 218, Lindfield, NSW, 2070, Australia
  • 刊物类别:Biomedical and Life Sciences
  • 刊物主题:Biomedicine
    Biomedicine
    Biophysics and Biomedical Physics
    Biotechnology
    Biochemistry
    Analytical Chemistry
  • 出版者:Springer Netherlands
  • ISSN:1573-4994
文摘
(E)-N-((8-Hydroxy-1,2,3,5,6,7-hexahydropyrido-[3,2,1-ij]-quinolin-9-yl)methylene)-4-tert-butyl -benzhydrazide has been developed as a single, dual-functional chemosensor. The chemosensor showed a good selectivity and sensitivity toward to Al3+ and Cu2+ at a low detection limit, respectively. Theoretical calculations have also been carried out to understand the configuration of the complexes. Keywords Chemosensor Al3+ ion Cu2+ ion Synthesis DFT calculations

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700