用户名: 密码: 验证码:
Thermal response of lithium-ion battery during charging and discharging under adiabatic conditions
详细信息    查看全文
  • 作者:Qingsong Wang ; Xuejuan Zhao ; Jiana Ye…
  • 关键词:Lithium ; ion batteries ; Charging and discharging ; Heat generation ; Thermal runaway
  • 刊名:Journal of Thermal Analysis and Calorimetry
  • 出版年:2016
  • 出版时间:April 2016
  • 年:2016
  • 卷:124
  • 期:1
  • 页码:417-428
  • 全文大小:1,360 KB
  • 参考文献:1.Horiba T, Maeshima T, Matsumura T, Koseki M, Arai J, Muranaka Y. Applications of high power density lithium ion batteries. J Power Sources. 2005;146(1):107–10.CrossRef
    2.Amine K, Chen Z, Zhang Z, Liu J, Lu W, Qin Y, et al. Mechanism of capacity fade of MCMB/Li1. 1 [Ni1/3Mn1/3Co1/3] 0.9 O2 cell at elevated temperature and additives to improve its cycle life. J Mater Chem. 2011;21(44):17754–9.CrossRef
    3.Belharouak I, Vissers D, Amine K. Thermal Stability of the Li (Ni0. 8Co0. 15Al0. 05) O2 Cathode in the Presence of Cell Components. J Electrochem Soc. 2006;153(11):A2030–5.CrossRef
    4.Chen Z, Qin Y, Liu J, Amine K. Lithium difluoro (oxalato) borate as additive to improve the thermal stability of lithiated graphite. Electrochem Solid-State Lett. 2009;12(4):A69–72.CrossRef
    5.Chen Z, Qin Y, Ren Y, Lu W, Orendorff C, Roth EP, et al. Multi-scale study of thermal stability of lithiated graphite. Energ Environ Sci. 2011;4(10):4023–30.CrossRef
    6.Katayama N, Kawamura T, Baba Y, Yamaki J-I. Thermal stability of propylene carbonate and ethylene carbonate–propylene carbonate-based electrolytes for use in Li cells. J Power Sources. 2002;109(2):321–6.CrossRef
    7.Wang Q, Ping P, Zhao X, Chu G, Sun J, Chen C. Thermal runaway caused fire and explosion of lithium ion battery. J Power Sources. 2012;208:210–24.CrossRef
    8.Botte GG, White RE, Zhang Z. Thermal stability of LiPF6–EC: EMC electrolyte for lithium ion batteries. J Power Sources. 2001;97:570–5.CrossRef
    9.Ravdel B, Abraham K, Gitzendanner R, DiCarlo J, Lucht B, Campion C. Thermal stability of lithium-ion battery electrolytes. J Power Sources. 2003;119:805–10.CrossRef
    10.Kweon HJ, Park J, Seo J, Kim G, Jung B, Lim HS. Effects of metal oxide coatings on the thermal stability and electrical performance of LiCoCO2 in a Li-ion cell. J Power Sources. 2004;126(1–2):156–62.CrossRef
    11.Hyung YE, Vissers DR, Amine K. Flame-retardant additives for lithium-ion batteries. J Power Sources. 2003;119:383–7.CrossRef
    12.Lee CW, Venkatachalapathy R, Prakash J. A novel flame-retardant additive for lithium batteries. Electrochem Solid-State Lett. 2000;3(2):63–5.CrossRef
    13.Xu K, Ding MS, Zhang S, Allen JL, Jow TR. An attempt to formulate nonflammable lithium ion electrolytes with alkyl phosphates and phosphazenes. J Electrochem Soc. 2002;149(5):A622–6.CrossRef
    14.Zhang S, Xu K, Jow T. Tris (2,2,2-trifluoroethyl) phosphite as a co-solvent for nonflammable electrolytes in Li-ion batteries. J Power Sources. 2003;113(1):166–72.CrossRef
    15.Zheng JY, Li X, Yu YJ, Feng XM, Zhao YF. Novel high phosphorus content phosphaphenanthrene-based efficient flame retardant additives for lithium-ion battery. J Therm Anal Calorim. 2014;117(1):319–24.CrossRef
    16.Venugopal G, Moore J, Howard J, Pendalwar S. Characterization of microporous separators for lithium-ion batteries. J Power Sources. 1999;77(1):34–41.CrossRef
    17.Wang Q, Ping P, Sun J, Chen C. Improved thermal stability of lithium ion battery by using cresyl diphenyl phosphate as an electrolyte additive. J Power Sources. 2010;195(21):7457–61.CrossRef
    18.Wang Q, Sun J, Chen C. Improved thermal stability of graphite electrodes in lithium-ion batteries using 4-isopropyl phenyl diphenyl phosphate as an additive. J Appl Electrochem. 2009;39(7):1105–10.CrossRef
    19.Yao XL, Xie S, Chen CH, Wang QS, Sun JH, Li YL, et al. Comparisons of graphite and spinel Li1.33Ti1.67O4 as anode materials for rechargeable lithium-ion batteries. Electrochim Acta. 2005;50(20):4076–81.CrossRef
    20.Wang QS, Sun JH, Chen CH. Enhancing the thermal stability of LiCoO2 electrode by 4-isopropyl phenyl diphenyl phosphate in lithium ion batteries. J Power Sources. 2006;162(2):1363–6.CrossRef
    21.Ishikawa H, Mendoza O, Sone Y, Umeda M. Study of thermal deterioration of lithium-ion secondary cell using an accelerated rate calorimeter (ARC) and AC impedance method. J Power Sources. 2012;198:236–42.CrossRef
    22.Jhu C-Y, Wang Y-W, Shu C-M, Chang J-C, Wu H-C. Thermal explosion hazards on 18650 lithium ion batteries with a VSP2 adiabatic calorimeter. J Hazard Mater. 2011;192(1):99–107.
    23.Jhu C-Y, Wang Y-W, Wen C-Y, Shu C-M. Thermal runaway potential of LiCoO2 and Li (Ni1/3Co1/3Mn1/3) O2 batteries determined with adiabatic calorimetry methodology. Appl Energy. 2011;100(C):127–31.
    24.Richard M, Dahn J. Accelerating rate calorimetry studies of the effect of binder type on the thermal stability of a lithiated mesocarbon microbead material in electrolyte. J Power Sources. 1999;83(1):71–4.CrossRef
    25.Richard M, Dahn J. Accelerating rate calorimetry study on the thermal stability of lithium intercalated graphite in electrolyte. I. Experimental. J Electrochem Soc. 1999;146(6):2068–77.CrossRef
    26.Richard M, Dahn J. Predicting electrical and thermal abuse behaviours of practical lithium-ion cells from accelerating rate calorimeter studies on small samples in electrolyte. J Power Sources. 1999;79(2):135–42.CrossRef
    27.Zhang JB, Huang J, Li Z, Wu B, Nie ZH, Sun Y, et al. Comparison and validation of methods for estimating heat generation rate of large-format lithium-ion batteries. J Therm Anal Calorim. 2014;117(1):447–61. doi:10.​1007/​s10973-014-3672-z .CrossRef
    28.Jiang J, Dahn J. Comparison of the thermal stability of lithiated graphite in LiBOB EC/DEC and in LiPF6 EC/DEC. Electrochem Solid-State Lett. 2003;6(9):A180–2.CrossRef
    29.Jiang J, Dahn J. ARC studies of the thermal stability of three different cathode materials: LiCoO2; Li [Ni0. 1Co0. 8Mn0. 1] O2; and LiFePO4, in LiPF6 and LiBoB EC/DEC electrolytes. Electrochem Commun. 2004;6(1):39–43.CrossRef
    30.Jiang J, Dahn J. ARC studies of the reaction between Li 0FePO4 and LiPF6/or LiBOB EC/DEC electrolytes. Electrochem Commun. 2004;6(7):724–8.CrossRef
    31.von Sacken U, Nodwell E, Sundher A, Dahn J. Comparative thermal stability of carbon intercalation anodes and lithium metal anodes for rechargeable lithium batteries. J Power Sources. 1995;54(2):240–5.CrossRef
    32.Feng XN, Fang M, He XM, Ouyang MG, Lu LG, Wang H, et al. Thermal runaway features of large format prismatic lithium ion battery using extended volume accelerating rate calorimetry. J Power Sources. 2014;255:294–301. doi:10.​1016/​j.​jpowsour.​2014.​01.​005 .CrossRef
    33.Liu GM, Ouyang MG, Lu LG, Li JQ, Han XB. Analysis of the heat generation of lithium-ion battery during charging and discharging considering different influencing factors. J Therm Anal Calorim. 2014;116(2):1001–10.CrossRef
    34.Chen WC, Li JD, Shu CM, Wang YW. Effects of thermal hazard on 18650 lithium-ion battery under different states of charge. J Therm Anal Calorim. 2015;121(1):525–31. doi:10.​1007/​s10973-015-4672-3 .CrossRef
    35.Al Hallaj S, Maleki H, Hong J-S, Selman JR. Thermal modeling and design considerations of lithium-ion batteries. J Power Sources. 1999;83(1):1–8.CrossRef
    36.Onda K, Ohshima T, Nakayama M, Fukuda K, Araki T. Thermal behavior of small lithium-ion battery during rapid charge and discharge cycles. J Power Sources. 2006;158(1):535–42.CrossRef
    37.Jiang J, Dahn JR. Effects of particle size and electrolyte salt on the thermal stability of Li0.5CoO2. Electrochim Acta. 2004;49(16):2661–6.CrossRef
    38.Lee SY, Kim SK, Ahn S. Performances and thermal stability of LiCoO2 cathodes encapsulated by a new gel polymer electrolyte. J Power Sources. 2007;174(2):480–3. doi:10.​1016/​j.​jpowsour.​2007.​06.​155 .CrossRef
    39.Shigematsu Y, Ue M, Yamaki J-I. Thermal behavior of charged graphite and Li × CoO2 in electrolytes containing alkyl phosphate for lithium-ion cells. J Electrochem Soc. 2009;156(3):A176–80.CrossRef
    40.Spotnitz R, Franklin J. Abuse behavior of high-power, lithium-ion cells. J Power Sources. 2003;113(1):81–100.CrossRef
    41.Wang QS, Sun JH, Chen XF, Chu GQ, Chen CH. Effects of solvents and salt on the thermal stability of charged LiCoO2. Mater Res Bull. 2009;44(3):543–8.CrossRef
    42.Yamaki J, Baba Y, Katayama N, Takatsuji H, Egashira M, Okada S. Thermal stability of electrolytes with LixCoO2 cathode or lithiated carbon anode. J Power Sources. 2003;119:789–93.CrossRef
    43.Maleki H, Deng G, Anani A, Howard J. Thermal stability studies of li-ion cells and components. J Electrochem Soc. 1999;146(9):3224–9.CrossRef
    44.Gu W, Wang C. Thermal–electrochemical modeling of battery systems. J Electrochem Soc. 2000;147(8):2910–22.CrossRef
    45.Hatchard T, MacNeil D, Basu A, Dahn J. Thermal model of cylindrical and prismatic lithium-ion cells. J Electrochem Soc. 2001;148(7):A755–61.CrossRef
    46.Kim G-H, Pesaran A, Spotnitz R. A three-dimensional thermal abuse model for lithium-ion cells. J Power Sources. 2007;170(2):476–89.CrossRef
    47.Chen S, Wan C, Wang Y. Thermal analysis of lithium-ion batteries. J Power Sources. 2005;140(1):111–24.CrossRef
    48.Chen M, Sun QJ, Li YQ, Wu K, Liu BJ, Peng P, et al. A thermal runaway simulation on a lithium titanate battery and the battery module. Energies. 2015;8(1):490–500. doi:10.​3390/​en8010490 .CrossRef
    49.Torabi F, Esfahanian V. Study of thermal-runaway in batteries. I. Theoretical study and formulation. J Electrochem Soc. 2011;158(8):A850–8.CrossRef
    50.Zhang SS. A review on the separators of liquid electrolyte Li-ion batteries. J Power Sources. 2007;164(1):351–64.CrossRef
  • 作者单位:Qingsong Wang (1) (2) (3)
    Xuejuan Zhao (1)
    Jiana Ye (1)
    Qiujuan Sun (1)
    Ping Ping (1)
    Jinhua Sun (1)

    1. State Key Laboratory of Fire Science, University of Science and Technology of China, Hefei, 230026, People’s Republic of China
    2. Collaborative Innovation Center for Urban Public Safety, Hefei, 230026, Anhui Province, People’s Republic of China
    3. CAS Key Laboratory of Materials for Energy Conversion, University of Science and Technology of China, Hefei, 230026, People’s Republic of China
  • 刊物类别:Chemistry and Materials Science
  • 刊物主题:Chemistry
    Sciences
    Polymer Sciences
    Physical Chemistry
    Inorganic Chemistry
    Measurement Science and Instrumentation
  • 出版者:Akad茅miai Kiad贸, co-published with Springer Science+Business Media B.V., Formerly Kluwer Academic
  • ISSN:1572-8943
文摘
The thermal responses of the lithium-ion cells during charging and discharging are investigated using an accelerating rate calorimeter combined with a multi-channel battery cycler. The battery capacities are 800 and 1100 mAh, and the battery cathode is LiCoO2. It is found that the higher the current rates and the increased initial temperatures are, the greater the potential thermal hazard is. The temperature required to shut down the separator is 133 °C for this separator used in the battery. When the temperature exceeds this activation threshold temperature, the separator will melt and cause an internal short circuit between the electrodes. The heat generation during the discharging process is measured under adiabatic conditions. The heat generation at thermal runaway process contributes to the main heat in the whole experimental process. The total heat generation rate to cell capacity varies from 6.58 to 8.96 J mAh−1 in the six cases. The results can be used to investigate and provide guides for designing concepts for the safe use of lithium-ion batteries.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700