用户名: 密码: 验证码:
Preparation of surface imprinted core-shell particles via a metal chelating strategy: specific recognition of porcine serum albumin
详细信息    查看全文
  • 作者:Qinran Li ; Kaiguang Yang ; Senwu Li ; Lukuan Liu ; Lihua Zhang…
  • 关键词:Molecular imprinting ; Metal ion immobilization ; Protein imprinting ; Silica particles ; HPLC ; Transmission electron microscopy
  • 刊名:Microchimica Acta
  • 出版年:2016
  • 出版时间:January 2016
  • 年:2016
  • 卷:183
  • 期:1
  • 页码:345-352
  • 全文大小:1,440 KB
  • 参考文献:1.Mahon CS, Fulton DA (2014) Mimicking nature with synthetic macromolecules capable of recognition. Nat Chem 6(8):665–672. doi:10.​1038/​nchem.​1994 CrossRef
    2.Whitcombe MJ, Chianella I, Larcombe L, Piletsky SA, Noble J, Porter R, Horgan A (2011) The rational development of molecularly imprinted polymer-based sensors for protein detection. Chem Soc Rev 40(3):1547–1571. doi:10.​1039/​c0cs00049c CrossRef
    3.Pan G, Zhang Y, Ma Y, Li C, Zhang H (2011) Efficient one-pot synthesis of water-compatible molecularly imprinted polymer microspheres by facile RAFT precipitation polymerization. Angew Chem Int Edit 50(49):11731–11734. doi:10.​1002/​anie.​201104751 CrossRef
    4.Yang KG, Liu ZB, Mao M, Zhang XH, Zhao CS, Nishi N (2005) Molecularly imprinted polyethersulfone microspheres for the binding and recognition of bisphenol A. Anal Chim Acta 546(1):30–36. doi:10.​1016/​j.​aca.​2005.​05.​008 CrossRef
    5.Yang KG, Berg MM, Zhao CS, Ye L (2009) One-pot synthesis of hydrophilic molecularly imprinted nanoparticles. Macromolecules 42(22):8739–8746. doi:10.​1021/​Ma901761z CrossRef
    6.Shen XT, Ye L (2011) Molecular imprinting in Pickering emulsions: a new insight into molecular recognition in water. Chem Commun 47(37):10359–10361. doi:10.​1039/​c1cc13899e CrossRef
    7.Hao Y, Gao R, Shi L, Liu D, Tang Y, Guo Z (2015) Water-compatible magnetic imprinted nanoparticles served as solid-phase extraction sorbents for selective determination of trace 17beta-estradiol in environmental water samples by liquid chromatography. J Chromatogr A 1396:7–16. doi:10.​1016/​j.​chroma.​2015.​03.​083 CrossRef
    8.Yang KG, Zhang LH, Liang Z, Zhang YK (2012) Protein-imprinted materials: rational design, application and challenges. Anal Bioanal Chem 403(8):2173–2183. doi:10.​1007/​s00216-012-5840-y CrossRef
    9.Fukazawa K, Ishihara K (2009) Fabrication of a cell-adhesive protein imprinting surface with an artificial cell membrane structure for cell capturing. Biosens Bioelectron 25(3):609–614. doi:10.​1016/​j.​bios.​2009.​02.​034 CrossRef
    10.Zhou J, Gan N, Li T, Hu F, Li X, Wang L, Zheng L (2014) A cost-effective sandwich electrochemiluminescence immunosensor for ultrasensitive detection of HIV-1 antibody using magnetic molecularly imprinted polymers as capture probes. Biosens Bioelectron 54:199–206. doi:10.​1016/​j.​bios.​2013.​10.​044 CrossRef
    11.Zhang W, Liu W, Li P, Xiao H, Wang H, Tang B (2014) A fluorescence nanosensor for glycoproteins with activity based on the molecularly imprinted spatial structure of the target and boronate affinity. Angew Chem Int Ed 53(46):12489–12493. doi:10.​1002/​anie.​201405634
    12.Li Q, Yang K, Liang Y, Jiang B, Liu J, Zhang L, Liang Z, Zhang Y (2014) Surface protein imprinted core–shell particles for high selective lysozyme recognition prepared by reversible addition–fragmentation chain transfer strategy. ACS Appl Mater Interfaces 6(24):21954–21960. doi:10.​1021/​am5072783 CrossRef
    13.Yang K, Liu J, Li S, Li Q, Wu Q, Zhou Y, Zhao Q, Deng N, Liang Z, Zhang L, Zhang Y (2014) Epitope imprinted polyethersulfone beads by self-assembly for target protein capture from the plasma proteome. Chem Commun 50(67):9521–9524. doi:10.​1039/​c4cc03428g CrossRef
    14.Li QR, Yang KG, Liu JX, Zhang LH, Liang Z, Zhang YK (2013) Transferrin recognition based on a protein imprinted material prepared by hierarchical imprinting technique. Microchim Acta 180(15–16):1379–1386. doi:10.​1007/​s00604-013-0994-7 CrossRef
    15.Liu J, Yang K, Deng Q, Li Q, Zhang L, Liang Z, Zhang Y (2011) Preparation of a new type of affinity materials combining metal coordination with molecular imprinting. Chem Commun 47(13):3969–3971. doi:10.​1039/​c0cc05317a CrossRef
    16.Saridakis E, Khurshid S, Govada L, Phan Q, Hawkins D, Crichlow GV, Lolis E, Reddy SM, Chayen NE (2011) Protein crystallization facilitated by molecularly imprinted polymers. Proc Natl Acad Sci U S A 108(27):11081–11086. doi:10.​1073/​pnas.​1016539108 CrossRef
    17.Saridakis E, Chayen NE (2013) Imprinted polymers assisting protein crystallization. Trends Biotechnol 31(9):515–520. doi:10.​1016/​j.​tibtech.​2013.​05.​003 CrossRef
    18.Cutivet A, Schembri C, Kovensky J, Haupt K (2009) Molecularly imprinted microgels as enzyme inhibitors. J Am Chem Soc 131(41):14699–14702. doi:10.​1021/​ja901600e CrossRef
    19.Liu J, Deng Q, Yang K, Zhang L, Liang Z, Zhang Y (2010) Macroporous molecularly imprinted monolithic polymer columns for protein recognition by liquid chromatography. J Sep Sci 33(17–18):2757–2761. doi:10.​1002/​jssc.​201000350 CrossRef
    20.Liu J, Deng Q, Tao D, Yang K, Zhang L, Liang Z, Zhang Y (2014) Preparation of protein imprinted materials by hierarchical imprinting techniques and application in selective depletion of albumin from human serum. Sci Rep 4:5487. doi:10.​1038/​srep05487
    21.Chen LX, Xu SF, Li JH (2011) Recent advances in molecular imprinting technology: current status, challenges and highlighted applications. Chem Soc Rev 40(5):2922–2942. doi:10.​1039/​c0cs00084a CrossRef
    22.Shen XT, Zhou TC, Ye L (2012) Molecular imprinting of protein in Pickering emulsion. Chem Commun 48(66):8198–8200. doi:10.​1039/​c2cc33572g CrossRef
    23.Gao RX, Kong X, Wang X, He XW, Chen LX, Zhang YK (2011) Preparation and characterization of uniformly sized molecularly imprinted polymers functionalized with core-shell magnetic nanoparticles for the recognition and enrichment of protein. J Mater Chem 21(44):17863–17871. doi:10.​1039/​c1jm12414e CrossRef
    24.Gao R, Mu X, Hao Y, Zhang L, Zhang J, Tang Y (2014) Combination of surface imprinting and immobilized template techniques for preparation of core-shell molecularly imprinted polymers based on directly amino-modified Fe3O4 nanoparticles for specific recognition of bovine hemoglobin. J Mater Chem B 2(12):1733–1741. doi:10.​1039/​c3tb21684e CrossRef
    25.Liu J, Yang K, Qu Y, Li S, Wu Q, Liang Z, Zhang L, Zhang Y (2015) An efficient approach to prepare boronate core-shell polymer nanoparticles for glycoprotein recognition via combined distillation precipitation polymerization and RAFT media precipitation polymerization. Chem Commun (Camb) 51(18):3896–3898. doi:10.​1039/​c4cc10004b CrossRef
    26.Lu Q, Chen X, Nie L, Luo J, Jiang H, Chen L, Hu Q, Du S, Zhang Z (2010) Tuning of the vinyl groups’ spacing at surface of modified silica in preparation of high density imprinted layer-coated silica nanoparticles: a dispersive solid-phase extraction materials for chlorpyrifos. Talanta 81(3):959–966. doi:10.​1016/​j.​talanta.​2010.​01.​044 CrossRef
    27.Hayden O, Lieberzeit PA, Blaas D, Dickert FL (2006) Artificial antibodies for bioanalyte detection-sensing viruses and proteins. Adv Funct Mater 16(10):1269–1278. doi:10.​1002/​adfm.​200500626 CrossRef
    28.Dechtrirat D, Jetzschmann KJ, Stocklein WFM, Scheller FW, Gajovic-Eichelmann N (2012) Protein rebinding to a surface-confined imprint. Adv Funct Mater 22(24):5231–5237. doi:10.​1002/​adfm.​201201328 CrossRef
    29.Hoshino Y, Urakami T, Kodama T, Koide H, Oku N, Okahata Y, Shea KJ (2009) Design of synthetic polymer nanoparticles that capture and neutralize a toxic peptide. Small 5(13):1562–1568. doi:10.​1002/​smll.​200900186 CrossRef
  • 作者单位:Qinran Li (1) (2)
    Kaiguang Yang (1)
    Senwu Li (1) (2)
    Lukuan Liu (1) (2)
    Lihua Zhang (1)
    Zhen Liang (1)
    Yukui Zhang (1)

    1. Key Laboratory of Separation Science for Analytical Chemistry, National Chromatographic R.&.A Center, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, China
    2. University of Chinese Academy of Sciences, Beijing, 100039, China
  • 刊物类别:Chemistry and Materials Science
  • 刊物主题:Chemistry
    Analytical Chemistry
    Inorganic Chemistry
    Physical Chemistry
    Characterization and Evaluation Materials
    Monitoring, Environmental Analysis and Environmental Ecotoxicology
  • 出版者:Springer Wien
  • ISSN:1436-5073
文摘
We describe the synthesis of molecularly imprinted core-shell microparticles via a metal chelating strategy that assists in the creation of selective recognition sites for albumin. Porcine serum albumin (PSA) was immobilized on silica beads via copper(II) chelation interaction. A solution containing 2-hydroxyethyl methacrylate and methacrylic acid as the monomers was mixed with the above particles, and free radical polymerization was performed at 25 °C. Copper ion and template were then removed to obtain PSA-imprinted core-shell particles (MIPs) with a typical diameter of 5 μm. The binding capacity of such MIP was 8.9 mg protein per gram of MIPs, and the adsorption equilibrium was established within <20 min. The imprinting factor for PSA reached 2.6 when the binding capacity was 7.7 mg protein per gram of MIPs. The use of such MIPs enabled PSA to be selectively recognized even in presence of the competitive proteins ribonuclease B, cytochrome c, and myoglobin. The results indicate that this imprinting strategy for protein may become a promising method to prepare MIPs for protein recognition.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700