用户名: 密码: 验证码:
CdS/ZnS core-shell quantum dots capped with mercaptoacetic acid as fluorescent probes for Hg(II) ions
详细信息    查看全文
  • 作者:Masilamany Koneswaran (12) konesh26@yahoo.com
    Ramaier Narayanaswamy (2)
  • 关键词:Quantum dots &#8211 ; Core ; shell &#8211 ; CdS/ZnS &#8211 ; Probe &#8211 ; Mercury &#8211 ; Fluorescence
  • 刊名:Microchimica Acta
  • 出版年:2012
  • 出版时间:July 2012
  • 年:2012
  • 卷:178
  • 期:1-2
  • 页码:171-178
  • 全文大小:395.3 KB
  • 参考文献:1. Caruthers SD, Wickline SA, Lanza GM (2007) Nanotechnological applications in medicine. Curr Opin Biotechnol 18:26–30
    2. Rosi NL, Mirkin CA (2005) Nanostructures in biodiagnostics. Chem Rev 105:1547–1562
    3. Clapp AR, Medintz IL, Uyeda HT, Fisher BR, Goldman ER, Bawendi MG, Mattoussi H (2005) Quantum dot-based multiplexed fluorescence resonance energy transfer. J Am Chem Soc 127:18212–18221
    4. Goldman ER, Balighian ED, Mattoussi H, Kuno MK, Mauro JM, Tran PT, Anderson GP (2002) Avidin: a natural bridge for quantum dot-antibody conjugates. J Am Chem Soc 124:6378–6382
    5. Chen Y, Rosenzweig Z (2002) Luminescent CdS quantum dots as selective ion probes. Anal Chem 74:5132–5138
    6. Koneswaran M, Narayanaswamy R (2009) L-Cysteine-capped ZnS quantum dots based fluorescence sensor for Cu2+ ion. Sensors Actuators B Chem 139:104–109
    7. Alivisatos AP (1996) Perspectives on the physical chemistry of semiconductor nanocrystals. J Phys Chem 100:13226–13239
    8. Chan WCW, Maxwel DJ, Gao X, Bailey RE, Han M, Nie S (2002) Luminescent quantum dots for multiplexed biological detection and imaging. Curr Opin Biotechnol 13:40–46
    9. Smith AM, Nie S (2004) Chemical analysis and cellular imaging with quantum dots. Analyst 129:672–677
    10. Kuang R, Kuang X, Pan S, Zheng X, Duan J, Duan Y (2010) Synthesis of cysteamine-coated CdTe quantum dots for the detection of bisphenol A. Microchim Acta 169:109–115
    11. Zhang L, Ci Xu, Li B (2009) Simple and sensitive detection method for chromium(VI) in water using glutathione—capped CdTe quantum dots as fluorescent probes. Microchim Acta 166:61–68
    12. Landes C, Burda C, Braun M, El-Sayed MA (2001) Photoluminescence of CdSe nanoparticles in the presence of a hole acceptor: n-Butylamine. J Phys Chem B 105:2981–2986
    13. Dong F, Hu K, Han H, Liang J (2009) A novel method for methimazole determination using CdSe quantum dots as fluorescence probes. Microchim Acta 165:195–201
    14. Liang J, Huang S, Zeng D, He Z, Ji X, Ai X, Yang H (2006) CdSe quantum dots as luminescent probes for spironolactone determination. Talanta 69:126–130
    15. Liu S-M, Guo H-Q, Zhang Z-H, Li R, Chen W, Wang Z-G (2000) Characterization of CdSe and CdSe/CdS core/shell nanoclusters synthesized in aqueous solution. Phys E: Low Dim Syst Nanostruct 8:174–178
    16. Lin CI, Joseph AK, Chang CK, Lee YD (2004) Synthesis and photoluminescence study of molecularly imprinted polymers appended onto CdSe/ZnS core-shells. Biosens Bioelectron 20:127–131
    17. Dabbousi BO, Rodriguez-Viejo J, Mikulec FV, Heine JR, Mattoussi H, Ober R, Jensen KF, Bawendi MG (1997) (CdSe)ZnS core−shell quantum dots: synthesis and characterization of a size series of highly luminescent nanocrystallites. J Phys Chem B 101:9463–9475
    18. Tian Y, Newton T, Kotov NA, Guldi DM, Fendler JH (1996) Coupled composite CdS−CdSe and core−shell types of (CdS)CdSe and (CdSe)CdS nanoparticles. J Phys Chem 100:8927–8939
    19. Peng X, Schlamp MC, Kadavanich AV, Alivisatos AP (1997) Epitaxial growth of highly luminescent CdSe/CdS core/shell nanocrystals with photostability and electronic accessibility. J Am Chem Soc 119:7019–7029
    20. Micic OI, Smith BB, Nozik AJ (2000) Core-shell quantum dots of lattice-matched ZnCdSe2 shells on InP cores: experiment and theory. J Phys Chem B 104:12149–12156
    21. Murray CB, Norris DJ, Bawendi MG (1993) Synthesis and characterization of nearly monodisperse CdE (E = sulfur, selenium, tellurium) semiconductor nanocrystallites. J Am Chem Soc 115:8706–8715
    22. Jonathan SS, John PZ, Seth C-S, Nathan ES, Vladimir BC, Bawendi MG (2004) Blue luminescence from (CdS)ZnS core-shell nanocrystals. Angew Chem Int Ed 43:2154–2158
    23. Song K-K, Lee S (2001) Highly luminescent (ZnSe)ZnS core-shell quantum dots for blue to UV emission: synthesis and characterization. Curr Appl Phys 1:169–173
    24. Duong HD, Rhee JI (2007) Use of CdSe/ZnS core-shell quantum dots as energy transfer donors in sensing glucose. Talanta 73:899–905
    25. Gerion D, Pinaud F, Williams SC, Parak WJ, Zanchet D, Weiss S, Alivisatos AP (2001) Synthesis and properties of biocompatible water-soluble silica-coated CdSe/ZnS semiconductor quantum dots. J Phys Chem B 105:8861–8871
    26. Chen C-C, Yet C-P, Wang H-N, Chao C-Y (1999) Self-assembly of monolayers of cadmium selenide nanocrystals with dual color emission. Langmuir 15:6845–6850
    27. Aldana J, Wang YA, Peng X (2001) Photochemical instability of CdSe nanocrystals coated by hydrophilic thiols. J Am Chem Soc 123:8844–8850
    28. Koneswaran M, Narayanaswamy R (2009) Mercaptoacetic acid capped CdS quantum dots as fluorescence single shot probe for mercury(II). Sensors Actuators B Chem 139:91–96
    29. Peng H, Zhang L, Soeller C, Travas-Sejdic J (2007) Preparation of water-soluble CdTe/CdS core/shell quantum dots with enhanced photostability. J Lumin 127:721–726
    30. Chowdhury S, Ahmed GA, Mohanta D, Dolui SK, Avasthi DK, Choudhury A (2005) Luminescence study of bare and coated CdS quantum dots: effect of SHI irradiation and ageing. Nucl Inst Methods Phys Res B 240:690–696
    31. Cai Z-X, Yang H, Zhang Y, Yan X-P (2006) Preparation, characterization and evaluation of water-soluble L-cysteine-capped-CdS nanoparticles as fluorescence probe for detection of Hg(II) in aqueous solution. Anal Chim Acta 559:234–239
    32. Li H, Shih WY, Shih W-H (2007) Synthesis and characterization of aqueous carboxyl-capped CdS quantum dots for bioapplications. Ind Eng Chem Res 46:2013–2019
    33. Gao M, Kirstein S, Mohwald H, Rogach AL, Kornowski A, Eychmuller A, Weller H (1998) Strongly photoluminescent CdTe nanocrystals by proper surface modification. J Phys Chem B 102:8360–8363
    34. Myung N, Bae Y, Bard AJ (2003) Enhancement of the photoluminescence of CdSe nanocrystals dispersed in CHCl3 by oxygen passivation of surface states. Nano Lett 3:747–749
    35. Liang J-G, Ai X-P, He Z-K, Pang D-W (2004) Functionalized CdSe quantum dots as selective silver ion chemodosimeter. Analyst 129:619–622
    36. Young S (2007) Selective fluorescent Hg(II) detection in aqueous solutions with a dye intermediate. Spectrochim Acta A 68:705–709
    37. Sandor M, Geistmann F, Schuster M (1999) An anthracene-substituted benzoylthiourea for the selective determination of Hg(II) in micellar media. Anal Chim Acta 388:19–26
    38. Chen J, Gao Y-C, Xu Z-B, Wu G-H, Chen Y-C, Zhu C-Q (2006) A novel fluorescent array for mercury (II) ion in aqueous solution with functionalized cadmium selenide nanoclusters. Anal Chim Acta 577:77–84
    39. Zhu C, Li L, Fang F, Chen J, Wu Y (2005) Functional InP nanocrystals as novel near-infrared fluorescent sensors for mercury ions. Chem Lett 34:898–899
  • 作者单位:1. Sri Lanka Institute of Nanotechnology (SLINTEC), Biyagama Export Processing Zone, Colombo, Sri Lanka2. Centre for Instrumentation and Analytical Science, School of Chemical Engineering and Analytical Science, University of Manchester, PO Box. 88, Sackville Street, Manchester, M60 1QD UK
  • 刊物类别:Chemistry and Materials Science
  • 刊物主题:Chemistry
    Analytical Chemistry
    Inorganic Chemistry
    Physical Chemistry
    Characterization and Evaluation Materials
    Monitoring, Environmental Analysis and Environmental Ecotoxicology
  • 出版者:Springer Wien
  • ISSN:1436-5073
文摘
We have synthesised water soluble CdS/ZnS core-shell quantum dots (QDs) capped with mercaptoacetic acid (MAA). They were characterised by UV–vis absorption spectroscopy, fluorescence spectroscopy, FT-IR and transmission electron microscopy. Such QDs can be used as fluorescent probes for the determination of metal ions because they quench the fluorescence of the QDs. The QDs exhibit absorption and emission bands at 345 nm and 475 nm respectively, which is more longer wavelength compared to MAA-capped CdS QDs and obviously is the result of the larger particle size. The fluorescence intensity of CdS-based QDs is strongly enhanced by coating them with a shell of ZnS. In addition, such functionalised QDs are more sensitive to Hg(II) ions. Parameters such as pH, temperature and concentration of the QDs have been optimised. A high selectivity and sensitivity toward Hg(II) ions is obtained at pH 7.4 and a concentration of 12.0 mg of QDs per L. Under optimum conditions, the fluorescence intensity of CdS/ZnS QDs is linearly proportional to the concentration of Hg(II) in the range from 2.5 to 280 nM, with a detection limit of 2.2 nM. The effect of potentially interfering cations was examined and confirmed the high selectivity of this material.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700