用户名: 密码: 验证码:
Altered Expression Pattern of Acid-Sensing Ion Channel Isoforms in Piriform Cortex After Seizures
详细信息    查看全文
  • 作者:Hao Wu ; Chao Wang ; Bei Liu ; Huanfa Li ; Yu Zhang ; Shan Dong…
  • 关键词:Acid ; sensing ion channels ; Oxidative stress ; Piriform cortex ; Seizures ; Epileptogenesis
  • 刊名:Molecular Neurobiology
  • 出版年:2016
  • 出版时间:April 2016
  • 年:2016
  • 卷:53
  • 期:3
  • 页码:1782-1793
  • 全文大小:4,485 KB
  • 参考文献:1.Kelly ME, McIntyre DC (1996) Perirhinal cortex involvement in limbic kindled seizures. Epilepsy Res 26(1):233–243PubMed CrossRef
    2.Chen X, Kalbacher H, Grunder S (2005) The tarantula toxin psalmotoxin 1 inhibits acid-sensing ion channel (ASIC) 1a by increasing its apparent H+ affinity. J Gen Physiol 126(1):71–79. doi:10.​1085/​jgp.​200509303 PubMed PubMedCentral CrossRef
    3.Ekholm A, Kristian T, Siesjo BK (1995) Influence of hyperglycemia and of hypercapnia on cellular calcium transients during reversible brain ischemia. Exp Brain Res 104(3):462–466PubMed CrossRef
    4.Chen CC, England S, Akopian AN, Wood JN (1998) A sensory neuron-specific, proton-gated ion channel. Proc Natl Acad Sci U S A 95(17):10240–10245PubMed PubMedCentral CrossRef
    5.Waldmann R, Bassilana F, de Weille J, Champigny G, Heurteaux C, Lazdunski M (1997) Molecular cloning of a non-inactivating proton-gated Na+ channel specific for sensory neurons. J Biol Chem 272(34):20975–20978PubMed CrossRef
    6.Wemmie JA, Chen J, Askwith CC, Hruska-Hageman AM, Price MP, Nolan BC, Yoder PG, Lamani E et al (2002) The acid-activated ion channel ASIC contributes to synaptic plasticity, learning, and memory. Neuron 34(3):463–477PubMed CrossRef
    7.Alvarez de la Rosa D, Krueger SR, Kolar A, Shao D, Fitzsimonds RM, Canessa CM (2003) Distribution, subcellular localization and ontogeny of ASIC1 in the mammalian central nervous system. J Physiol 546(Pt 1):77–87PubMed CrossRef
    8.Bartoi T, Augustinowski K, Polleichtner G, Grunder S, Ulbrich MH (2014) Acid-sensing ion channel (ASIC) 1a/2a heteromers have a flexible 2:1/1:2 stoichiometry. Proc Natl Acad Sci U S A 111(22):8281–8286. doi:10.​1073/​pnas.​1324060111 PubMed PubMedCentral CrossRef
    9.Benson CJ, Xie J, Wemmie JA, Price MP, Henss JM, Welsh MJ, Snyder PM (2002) Heteromultimers of DEG/ENaC subunits form H+-gated channels in mouse sensory neurons. Proc Natl Acad Sci U S A 99(4):2338–2343. doi:10.​1073/​pnas.​032678399 PubMed PubMedCentral CrossRef
    10.Askwith CC, Wemmie JA, Price MP, Rokhlina T, Welsh MJ (2004) Acid-sensing ion channel 2 (ASIC2) modulates ASIC1 H+-activated currents in hippocampal neurons. J Biol Chem 279(18):18296–18305. doi:10.​1074/​jbc.​M312145200 PubMed CrossRef
    11.Zha XM, Costa V, Harding AM, Reznikov L, Benson CJ, Welsh MJ (2009) ASIC2 subunits target acid-sensing ion channels to the synapse via an association with PSD-95. J Neurosci Off J Soc Neurosci 29(26):8438–8446. doi:10.​1523/​JNEUROSCI.​1284-09.​2009 CrossRef
    12.Askwith CC, Cheng C, Ikuma M, Benson C, Price MP, Welsh MJ (2000) Neuropeptide FF and FMRFamide potentiate acid-evoked currents from sensory neurons and proton-gated DEG/ENaC channels. Neuron 26(1):133–141PubMed CrossRef
    13.Pignataro G, Simon RP, Xiong ZG (2007) Prolonged activation of ASIC1a and the time window for neuroprotection in cerebral ischaemia. Brain J Neurol 130(Pt 1):151–158. doi:10.​1093/​brain/​awl325
    14.Xiong ZG, Zhu XM, Chu XP, Minami M, Hey J, Wei WL, MacDonald JF, Wemmie JA et al (2004) Neuroprotection in ischemia: blocking calcium-permeable acid-sensing ion channels. Cell 118(6):687–698. doi:10.​1016/​j.​cell.​2004.​08.​026 PubMed CrossRef
    15.Behan AT, Breen B, Hogg M, Woods I, Coughlan K, Mitchem M, Prehn JH (2013) Acidotoxicity and acid-sensing ion channels contribute to motoneuron degeneration. Cell Death Differ 20(4):589–598. doi:10.​1038/​cdd.​2012.​158 PubMed PubMedCentral CrossRef
    16.Siesjo BK, von Hanwehr R, Nergelius G, Nevander G, Ingvar M (1985) Extra- and intracellular pH in the brain during seizures and in the recovery period following the arrest of seizure activity. J Cereb Blood Flow Metab Off J Int Soc Cereb Blood Flow Metab 5(1):47–57. doi:10.​1038/​jcbfm.​1985.​7 CrossRef
    17.Baron A, Waldmann R, Lazdunski M (2002) ASIC-like, proton-activated currents in rat hippocampal neurons. J Physiol 539(Pt 2):485–494PubMed PubMedCentral CrossRef
    18.Baron A, Schaefer L, Lingueglia E, Champigny G, Lazdunski M (2001) Zn2+ and H+ are coactivators of acid-sensing ion channels. J Biol Chem 276(38):35361–35367. doi:10.​1074/​jbc.​M105208200 PubMed CrossRef
    19.Lv RJ, He JS, Fu YH, Zhang YQ, Shao XQ, Wu LW, Lu Q, Jin LR et al (2011) ASIC1a polymorphism is associated with temporal lobe epilepsy. Epilepsy Res 96(1–2):74–80. doi:10.​1016/​j.​eplepsyres.​2011.​05.​002 PubMed CrossRef
    20.N'Gouemo P (2008) Amiloride delays the onset of pilocarpine-induced seizures in rats. Brain Res 1222:230–232. doi:10.​1016/​j.​brainres.​2008.​05.​010 PubMed PubMedCentral CrossRef
    21.Tai KK, Truong DD (2013) Amiloride but not memantine reduces neurodegeneration, seizures and myoclonic jerks in rats with cardiac arrest-induced global cerebral hypoxia and reperfusion. PLoS One 8(4):e60309. doi:10.​1371/​journal.​pone.​0060309 PubMed PubMedCentral CrossRef
    22.Ziemann AE, Schnizler MK, Albert GW, Severson MA, Howard MA 3rd, Welsh MJ, Wemmie JA (2008) Seizure termination by acidosis depends on ASIC1a. Nat Neurosci 11(7):816–822. doi:10.​1038/​nn.​2132 PubMed PubMedCentral CrossRef
    23.Liu B, Niu L, Shen MZ, Gao L, Wang C, Li J, Song LJ, Tao Y et al (2014) Decreased astroglial monocarboxylate transporter 4 expression in temporal lobe epilepsy. Mol Neurobiol 50(2):327–338. doi:10.​1007/​s12035-013-8619-z PubMed CrossRef
    24.Waldbaum S, Patel M (2010) Mitochondria, oxidative stress, and temporal lobe epilepsy. Epilepsy Res 88(1):23–45. doi:10.​1016/​j.​eplepsyres.​2009.​09.​020 PubMed PubMedCentral CrossRef
    25.Panuccio G, Sanchez G, Levesque M, Salami P, de Curtis M, Avoli M (2012) On the ictogenic properties of the piriform cortex in vitro. Epilepsia 53(3):459–468. doi:10.​1111/​j.​1528-1167.​2012.​03408.​x PubMed CrossRef
    26.Loscher W, Ebert U (1996) The role of the piriform cortex in kindling. Prog Neurobiol 50(5–6):427–481PubMed CrossRef
    27.Kim YJ, Kim JY, Ko AR, Kang TC (2013) Reduction in heat shock protein 90 correlates to neuronal vulnerability in the rat piriform cortex following status epilepticus. Neuroscience 255:265–277. doi:10.​1016/​j.​neuroscience.​2013.​09.​050 PubMed CrossRef
    28.Dudek FE, Staley KJ (2011) The time course of acquired epilepsy: implications for therapeutic intervention to suppress epileptogenesis. Neurosci Lett 497(3):240–246. doi:10.​1016/​j.​neulet.​2011.​03.​071 PubMed CrossRef
    29.Dingledine R, Varvel NH, Dudek FE (2014) When and how do seizures kill neurons, and is cell death relevant to epileptogenesis? Adv Exp Med Biol 813:109–122. doi:10.​1007/​978-94-017-8914-1_​9 PubMed PubMedCentral CrossRef
    30.Centeno M, Vollmar C, Stretton J, Symms MR, Thompson PJ, Richardson MP, O'Muircheartaigh J, Duncan JS et al (2014) Structural changes in the temporal lobe and piriform cortex in frontal lobe epilepsy. Epilepsy Res 108(5):978–981. doi:10.​1016/​j.​eplepsyres.​2014.​03.​001 PubMed PubMedCentral CrossRef
    31.Demir R, Haberly LB, Jackson MB (2001) Epileptiform discharges with in-vivo-like features in slices of rat piriform cortex with longitudinal association fibers. J Neurophysiol 86(5):2445–2460PubMed
    32.Gavrilovici C, Pollock E, Everest M, Poulter MO (2012) The loss of interneuron functional diversity in the piriform cortex after induction of experimental epilepsy. Neurobiol Dis 48(3):317–328. doi:10.​1016/​j.​nbd.​2012.​07.​002 PubMed CrossRef
    33.Muller W, Bittner K (2002) Differential oxidative modulation of voltage-dependent K+ currents in rat hippocampal neurons. J Neurophysiol 87(6):2990–2995PubMed
    34.Simon F, Varela D, Cabello-Verrugio C (2013) Oxidative stress-modulated TRPM ion channels in cell dysfunction and pathological conditions in humans. Cell Signal 25(7):1614–1624. doi:10.​1016/​j.​cellsig.​2013.​03.​023 PubMed CrossRef
    35.Bruce AJ, Baudry M (1995) Oxygen free radicals in rat limbic structures after kainate-induced seizures. Free Radic Biol Med 18(6):993–1002PubMed CrossRef
    36.Schreck R, Albermann K, Baeuerle PA (1992) Nuclear factor kappa B: an oxidative stress-responsive transcription factor of eukaryotic cells (a review). Free Radic Res Commun 17(4):221–237PubMed CrossRef
    37.Rong Y, Baudry M (1996) Seizure activity results in a rapid induction of nuclear factor-kappa B in adult but not juvenile rat limbic structures. J Neurochem 67(2):662–668PubMed CrossRef
    38.Li J, Jiang G, Chen Y, Chen L, Li Z, Wang Z, Wang X (2014) Altered expression of hypoxia-Inducible factor-1alpha participates in the epileptogenesis in animal models. Synapse 68(9):402–409. doi:10.​1002/​syn.​21752 PubMed CrossRef
    39.Zeng WZ, Liu DS, Duan B, Song XL, Wang X, Wei D, Jiang W, Zhu MX et al (2013) Molecular mechanism of constitutive endocytosis of Acid-sensing ion channel 1a and its protective function in acidosis-induced neuronal death. J Neurosci Off J Soc Neurosci 33(16):7066–7078. doi:10.​1523/​JNEUROSCI.​5206-12.​2013 CrossRef
    40.Biagini G, Babinski K, Avoli M, Marcinkiewicz M, Seguela P (2001) Regional and subunit-specific downregulation of acid-sensing ion channels in the pilocarpine model of epilepsy. Neurobiol Dis 8(1):45–58. doi:10.​1006/​nbdi.​2000.​0331 PubMed CrossRef
    41.Hao J, Oertner TG (2012) Depolarization gates spine calcium transients and spike-timing-dependent potentiation. Curr Opin Neurobiol 22(3):509–515. doi:10.​1016/​j.​conb.​2011.​10.​004 PubMed CrossRef
    42.Feldman DE (2012) The spike-timing dependence of plasticity. Neuron 75(4):556–571. doi:10.​1016/​j.​neuron.​2012.​08.​001 PubMed PubMedCentral CrossRef
  • 作者单位:Hao Wu (1)
    Chao Wang (1)
    Bei Liu (1)
    Huanfa Li (1)
    Yu Zhang (1)
    Shan Dong (1)
    Guodong Gao (1)
    Hua Zhang (1)

    1. Department of Neurosurgery, Tangdu Hospital, Fourth Military Medical University, Xin-si Road, Xi’an, Shaanxi, 710038, People’s Republic of China
  • 刊物主题:Neurosciences; Neurobiology; Cell Biology; Neurology;
  • 出版者:Springer US
  • ISSN:1559-1182
文摘
The piriform cortex (PC) is highly susceptible to chemical and electrical seizure induction. Epileptiform activity is associated with an acid shift in extracellular pH, suggesting that acid-sensing ion channels (ASICs) expressed by PC neurons may contribute to this enhanced epileptogenic potential. In epileptic rats and surgical samples from patients with medial temporal lobe epilepsy (TLE), PC layer II ASIC1a-immunopositive neurons appeared swollen with dendritic elongation, and there was loss of ASIC1a-positive neurons in layer III, consistent with enhanced vulnerability to TLE-induced plasticity and cell death. In rats, pilocarpine-induced seizures led to transient downregulation of ASIC1a and concomitant upregulation of ASIC2a in the first few days post-seizure. These changes in expression may be due to seizure-induced oxidative stress as a similar reciprocal change in ASIC1a, and ASIC2a expression was observed in PC12 cells following H2O2 application. The proportion of ASIC1a/ASIC2a heteromers was reduced in the acute phase following status epilepticus (SE) but increased during the latent phase when rats developed spontaneous seizures. Knockdown of ASIC2a by RNAi reduced dendritic length and spine density in primary neurons, suggesting that seizure-induced upregulation of ASIC2a contributes to dendritic lengthening in PC layer II in rats. Administration of the ASIC inhibitor amiloride before pilocarpine reduced the proportion of rats reaching Racine level IV seizures, protected layer II and III neurons, and prolonged survival in the acute phase following SE. Our findings suggest that ASICs may enhance susceptibility to epileptogenesis in the PC. Inhibition of ASICs, particularly ASIC2a, may suppress seizures originating in the PC.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700