用户名: 密码: 验证码:
Modified Formulations of Particle Deposition and Removal Kinetics in Saturated Porous Media
详细信息    查看全文
  • 作者:Faruk Civan
  • 关键词:Particle ; Deposition ; Removal ; Kinetics ; Porous media
  • 刊名:Transport in Porous Media
  • 出版年:2016
  • 出版时间:January 2016
  • 年:2016
  • 卷:111
  • 期:2
  • 页码:381-410
  • 全文大小:1,113 KB
  • 参考文献:Al-Ibadi, A., Civan, F.: Experimental investigation and correlation of treatment in weak and high-permeability formations by gel particles, paper SPE-153557-PA. SPE Prod. Oper. 28(4), 387–401 (2013)CrossRef
    Altoe, J.E., Bedrikovetsky, F.P., Siqueira, A.G., Souza, A.L., Shecaira, F.S.: Correction of basic equations for deep bed filtration with dispersion. J. Pet. Sci. Eng. 51(1–2), 68–84 (2006)CrossRef
    Carman, P.C.: Fluid flow through a granular bed. Trans. Inst. Chem. Eng. Lond. 15, 150–167 (1937)
    Chang, Y.-I., Cheng, W.-Y., Chan, H.-C.: A proposed correlation equation for predicting filter coefficient under unfavorable deposition conditions. Sep. Purif. Technol. 65(3), 248–250 (2009)CrossRef
    Civan, F.: Predictability of Formation Damage: An Assessment Study and Generalized Models, Final Report, US DOE Contract No. DE-AC22-90-BC14658, April (1994a)
    Civan, F.: Solving multivariable mathematical models by the quadrature and cubature methods. Numer. Methods Partial Differ. Equ. 10, 545–567 (1994b)CrossRef
    Civan, F.: Modeling and simulation of formation damage by organic deposition. In: Proceedings of the First International Symposium on Colloid Chemistry in Oil Production: Asphaltenes and Wax Deposition, ISCOP’95, pp. 102–107. Rio de Janeiro, Brazil (1995a)
    Civan, F.: Practical implementation of the finite analytic method. Appl. Math. Model. 19(5), 298–306 (1995b)CrossRef
    Civan, F.: A multi-purpose formation damage model, paper SPE31101. In: Proceedings of the SPE Formation Damage Symposium, pp. 311–326. Lafayette, LA (1996)
    Civan, F.: Reservoir Formation Damage-Fundamentals, Modeling, Assessment, and Mitigation, 1st edn. Gulf Pub Co., Houston, and Butterworth-Heinemann, Woburn (2000)
    Civan, F.: Scale effect on porosity and permeability: kinetics, model, and correlation. AIChE J. 47(2), 271–287 (2001)CrossRef
    Civan, F.: Implications of alternative macroscopic descriptions illustrated by general balance and continuity equations. J. Porous Media 5(4), 271–282 (2002a)CrossRef
    Civan, F.: Relating permeability to pore connectivity using a power-law flow unit equation. Petrophys. J. 43(6), 457–476 (2002b)
    Civan, F.: Leaky-tube permeability model for identification, characterization, and calibration of reservoir flow units, paper SPE 84603. In: SPE Annual Technical Conference and Exhibition, Denver, Colorado, 5–8 October (2003)
    Civan, F.: Temperature dependence of wettability related rock properties correlated by the Arrhenius equation. Petrophysics 45(4), 350–362 (2004)
    Civan, F.: Improved permeability equation from the bundle-of-leaky-capillary-tubes model, SPE paper 94271-PP. In: The Production Operations Symposium held in Oklahoma City, Oklahoma, 17–19 April (2005)
    Civan, F.: Reservoir Formation Damage: Fundamentals, Modeling, Assessment, and Mitigation, 2nd edn. Gulf Professional Pub., Elsevier, Burlington (2007a)
    Civan, F.: Temperature effect on power for particle detachment from pore wall described by an Arrhenius-type equation. Transp Porous Media 67(2), 329–334 (2007b)CrossRef
    Civan, F.: Temperature effect on advection-diffusion transport involving fines migration and deposition in geological porous media, Article no. 452. In: 2008 IAHR International Groundwater Symposium, Istanbul, Turkey, June 18–20 (2008a)
    Civan, F.: Use exponential functions to correlate temperature dependence. Chem. Eng. Prog. 104(7), 46–52 (2008b)
    Civan, F.: Correlation of permeability loss by thermally-induced compaction due to grain expansion. Petrophys. J. 49(4), 351–361 (2008c)
    Civan, F.: Practical finite-analytic method for solving differential equations by compact numerical schemes. Num. Methods Partial Differ. Equ. 25(2), 347–379 (2009)CrossRef
    Civan, F.: Non-isothermal permeability impairment by fines migration and deposition in porous media including dispersive transport. Transp Porous Media 85(1), 233–258 (2010a)CrossRef
    Civan, F.: Modeling transport in porous media by control volume analysis. J. Porous Media 13(10), 855–873 (2010b)CrossRef
    Civan, F.: Porous Media Transport Phenomena. Wiley, Hoboken. ISBN:978-0-470-64995-4 (2011)
    Civan, F.: Improved permeability prediction for heterogeneous porous media by bundle-of-leaky-tubes with cross-flow model. In: Vafai, K. (ed.) Proceedings (CD) of the 5th International Conference on Porous Media and Its Applications in Science, Engineering and Industry (ICPMV), Kona, Hawaii, USA, June 22–27 (2014)
    Civan, F.: Effective transport through porous media under nonequilibrium relaxation conditions, Chapter 10. In: Vafai, K. (ed.) The Handbook of Porous Media-Third Edition (HPM3-1), pp. 391–438. CRC Press, Taylor & Francis Group, LLC, Boca Raton (2015)CrossRef
    Civan, F., Engler, T.: Drilling mud filtrate invasion—improved model and solution. J. Pet. Sci. Eng. 11, 183–193 (1994)CrossRef
    Civan, F., Knapp, R.M., Ohen, H.A.: Alteration of permeability by fine particle processes. J. Pet. Sci. Eng. 3(1/2), 65–79 (1989)CrossRef
    Civan, F., Nguyen, V.: Modeling particle migration and deposition in porous media by parallel pathways with exchange, Chapter 11. In: Vafai, K. (ed.) Handbook of Porous Media, 2nd edn, pp. 457–484. CRC Press, Taylor&Francis Group, LLC, Boca Raton (2005)CrossRef
    Civan, F., Rai, C.S., Sondergeld, C.H.: Determining shale permeability to gas by simultaneous analysis of various pressure tests, paper 144253-PA. SPE J. 17(3), 717–726 (2012)CrossRef
    Civan, F., Rasmussen, M.L.: Analytical models for porous media impairment by particles in rectilinear and radial flows, Chapter 12. In: Vafai, K. (ed.) Handbook of Porous Media, 2nd edn, pp. 485–542. CRC Press, Taylor&Francis Group, LLC, Boca Raton (2005)CrossRef
    Dupuit, J.: Etudes théoriques et pratiques sur le mouvement des eaux dans les canaux découverts et à travers les terrains perméables, 2nd edn. Dunod, Paris (1863)
    Elimelech, M., Gregory, J., Jia, X., Williams, R.A.: Particle Deposition and Aggregation: Measurement, Modeling and Simulation. Butterworth-Heinemann, Oxford (1995)
    Gao, T., Hu, H.H.: Deformation of elastic particles in viscous shear flow. J. Comput. Phys. 228(6), 2132–2151 (2009)CrossRef
    Gao, T., Hu, H.H., Castañeda, P.P.: Rheology of a suspension of elastic particles in a viscous shear flow. J. Fluid Mech. 687, 209–237 (2011)CrossRef
    Ghofrani, R., Alaboudi, M.A.M.: Damage caused by clay-based and clay-free inhibitive fluids in sandstone formations, paper SPE 23815. In: Proceedings of the SPE International Symposium on Formation Damage Control, pp. 439–446. Lafayette, LA, February 26–27 (1992)
    Gruesbeck, C., Collins, R.E.: Entrainment and deposition of fine particles in porous media. SPEJ 22(6), 847–856 (1982a)CrossRef
    Gruesbeck, C., Collins, R.E.: Particles transport through perforations. SPEJ 22(6), 857–865 (1982b)CrossRef
    Iscan, A.G., Civan, F.: Correlation of criteria for perforation and pore plugging by particles. J. Porous Media 9(6), 541–558 (2006)CrossRef
    Iscan, A.G., Civan, F., Kok, M.V.: Alteration of permeability by drilling fluid invasion and flow reversal. J. Pet. Sci. Eng. 58(1–2), 227–244 (2007)CrossRef
    Iscan, A.G., Kok, M.V., Civan, F.: Investigation of porosity and permeability impairment in sandstones by X-ray analysis and simulation. Energy Sources Part A 31(5), 387–395 (2009)CrossRef
    Ives, K.J.: Filtration of clay suspensions through sand. Clay Miner. 22, 49–61 (1987)CrossRef
    Iwasaki, T.: Some notes on sand filtration. J. Am. Water Works Assoc. 29(10), 1591–1602 (1937)
    Jin, L., Wojtanowicz, A.K.: Development of injectivity damage due to oily waste water in linear flow, paper SPE-168130-MS. In: Proceedings of the SPE International Symposium and Exhibition on Formation Damage Control, Lafayette, Louisiana, USA, 26–28 February (2014)
    Khilar, K.C., Fogler, H.S.: Migration of Fines in Porous Media. Theory and Applications of Transport in Porous Media, vol. 12. Kluwer, Norwell (2000)
    Kohse, B.F., Nghiem, L.X.: Modelling asphaltene precipitation and deposition in a compositional reservoir simulator, paper SPE-89437-MS. In: SPE/DOE Symposium on Improved Oil Recovery, Tulsa, Oklahoma, 17–21 April (2004)
    Kord, S., Mohammadzadeh, O., Miri, R., Soulgani, B.S.: Further investigation into the mechanisms of asphaltene deposition and permeability impairment in porous media using a modified analytical model. Fuel 117, 259–268 (2014)CrossRef
    Lohne, A.L., Han, L., van der Zwaag, C., van Velzen, H., Mathisen, A.-M., Twyman, A., Hendriks, W., Bulgachev, R.V., Hatzignatiou, D.G.: Formation-damage and well-productivity simulation, paper SPE-122241-PA. SPE J. 15(3), 751–769 (2010)CrossRef
    Maroudas, A., Elsenklam, P.: Classification of suspensions: a study of particle deposition in granular media: part I-some observations on particle deposition. Chem. Eng. Sci. 20(10), 867–873 (1965)CrossRef
    Metzner, A.B., Reed, J.C.: Flow of non-Newtonian fluids-correlation of the laminar, transition, and turbulent flow regions. AIChE J. 1(4), 434–440 (1955)CrossRef
    Minssieux, L.: Core damage from crude asphaltene deposition, paper SPE 37250. In: SPE International Symposium on Oilfield Chemistry, Houston, Texas, February 18–21 (1997)
    Ohen, H.A., Civan, F.: Simulation of formation damage in petroleum reservoirs. SPE Adv. Technol. Ser. 1(1), 27–35 (1993)CrossRef
    Pandya, V.B., Bhuniya, S., Khilar, K.C.: Existence of a critical particle concentration in plugging of a packed bed. AIChE J. 44(4), 978–981 (1998)CrossRef
    Potanin, A.A., Uriev, N.B.: Micro-rheological models of aggregated suspensions in shear flow. J. Colloid Interface Sci. 142(2), 385–395 (1991)CrossRef
    Prada, A., Civan, F.: Modification of Darcy’s law for the threshold pressure gradient. J. Pet. Sci. Eng. 22(4), 237–240 (1999)CrossRef
    Roussel, N., Nguyen, T.L.H., Coussot, P.: General probabilistic approach to the filtration process. Phys. Rev. Lett. 98(11), 114502–114502 (2007)CrossRef
    Sarac, S., Civan, F.: Mechanisms, parameters, and modeling of naphthenate soap-induced formation damage, paper SPE-112434-PP. SPE J. 14(2), 259–266 (2009)CrossRef
    Schembre, J.M., Kovscek, A.R.: Mechanism of formation damage at elevated temperature. J. Energy Resour. Technol. Trans. ASME 127(3), 171–180 (2005)CrossRef
    Soulgani, B.S., Tohidi, B., Jamialahmadi, M., Rashtchian, D.: Modeling formation damage due to asphaltene deposition in the porous media. Energy Fuels 25, 753–761 (2011)CrossRef
    Stone, H.A.: Dynamics of drop deformation and breakup in viscous flows. Annu. Rev. Fluid Mech. 26, 65–102 (1994)CrossRef
    Taylor, G.I.: The formation of emulsions in definable fields of flow. Proc. Roy. Soc. Lond. A 146, 501–523 (1934)CrossRef
    Tiraferri, A., Tosco, T., Sethi, R.: Transport and retention of microparticles in packed sand columns at low and intermediate ionic strengths: experiments and mathematical modeling. Environ. Earth Sci. 63, 847–859 (2011). doi:10.​1007/​s12665-010-0755-4 CrossRef
    Tran, T.V., Civan, F., Robb, I.: Correlating flowing time and condition for perforation plugging by suspended particles, paper SPE120847-MS. SPE Drill. Complet. J. 24(3), 398–403 (2009)CrossRef
    Tremblay, B., Sedgwick, G., Forshner, K.: Modeling of sand production from wells on primary recovery. J. Can. Pet. Technol. 37(3), 41–50 (1998)CrossRef
    Tufenkji, N., Elimelech, M.: Correlation equation for predicting single-collector efficiency in physicochemical filtration in saturated porous media. Environ. Sci. Technol. 38(2), 529–536 (2004)CrossRef
    Wang, S., Civan, F.: Model-assisted analysis of simultaneous paraffin and asphaltene deposition in laboratory core tests. J. Energy Resour. Technol. 127(4), 318–322 (2005a)CrossRef
    Wang, S., Civan, F.: Modeling formation damage by asphaltene deposition during primary oil recovery. J. Energy Resour. Technol. 127(4), 310–317 (2005b)CrossRef
    Winsauer, W.O., Shearin, H.M., Masson, P.H., Williams, M.: Resistivity of brine saturated sands in relation to pore geometry. Bull. Am. Ass. Petrol. Geol. 36(2), 253–277 (1952)
    Wojtanowicz, A.K., Krilov, Z., Langlinais, J.P.: Experimental determination of formation damage pore blocking mechanisms. Trans. ASME J. Energy Resour. Technol. 110, 34–42 (1988)CrossRef
    Zamani, A., Maini, B.: Flow of dispersed particles through porous media—deep bed filtration. J. Pet. Sci. Eng. 69, 71–88 (2009)CrossRef
  • 作者单位:Faruk Civan (1)

    1. Mewbourne School of Petroleum and Geological Engineering, The University of Oklahoma, 100 East Boyd, SEC Room 1210, Norman, OK, 73019-1003, USA
  • 刊物类别:Earth and Environmental Science
  • 刊物主题:Earth sciences
    Geotechnical Engineering
    Industrial Chemistry and Chemical Engineering
    Civil Engineering
    Hydrogeology
    Mechanics, Fluids and Thermodynamics
  • 出版者:Springer Netherlands
  • ISSN:1573-1634
文摘
Important revisions on the particulate deposition and removal rate equations are offered for flow of particulate suspensions through saturated porous media by distinguishing between the factors effecting the mechanisms of various particle deposition and removal processes, and their rate coefficients and parameters. Formulation considers particle transport by convection and dispersion toward open and partially jammed pores, flux of particles above a critical minimum in suspension, unblocked particles available for removal at the pore surface, shear-force below critical for deposition of suspended particles, shear-force above critical for entrainment of unblocked surface particles, active ion concentration below critical for spontaneous particle release from pore surface, critical pore-throat-to-particle diameter ratio for pore-throat jamming, deformation and pore-sealing effects of elastic particles, internal filter cake formation by particle accumulation behind pore throats, normal-force above critical for dislocation of deposits from pore throats, and thermal-, concentration-, stress-, and mobility-shock phenomena. Inherent limitations of previous outstanding rate equations are alleviated by means of theoretical reasoning and/or experimental observations. Keywords Particle Deposition Removal Kinetics Porous media

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700