用户名: 密码: 验证码:
Monitoring tidal currents with a towed ADCP system
详细信息    查看全文
  • 作者:Alexei Sentchev ; Max Yaremchuk
  • 关键词:Towed ADCP survey ; Tidal currents ; English Channel ; Optimal interpolation
  • 刊名:Ocean Dynamics
  • 出版年:2016
  • 出版时间:January 2016
  • 年:2016
  • 卷:66
  • 期:1
  • 页码:119-132
  • 全文大小:3,832 KB
  • 参考文献:Barbin Y, Bellomo L, Doglioli A, Forget P, Fraunié P, Lecuyer E, Malengros D, Marmain J, Molcard A, Petrenko A, Quentin C, Sentchev A (2014) Experimental investigation of the relationship between HF radar measurements of currents and the dynamical properties of the upper ocean. Geophys Res Abstr 16. EGU2014-13078, EGU General Assembly
    Barth A, Alvera-Azcárate A, Beckers J-M, Weisberg RH, Vandenbulcke L, Lenartz F, Rixen M (2009) Dynamically constrained ensemble perturbations: application to tides on the West Florida Shelf. Ocean Sci 5:259–270CrossRef
    Black and Veatch (2005) Tidal stream energy resource and technology summary report. Carbon Trust
    Blunden LS, Bahaj AS (2006) Initial evaluation of tidal stream energy resources at Portland Bill, UK. Renew Energy 31:121–132CrossRef
    Bretherton FP, Davis RE, Fandry CB (1976) A technique for objective analysis and design of oceanographic experiments applied to MODE-73. Deep Sea Res 23:559–582
    Candela J, Beardsley RC, Limburner R (1992) Separation of tides and sub-tidal currents in ship-mounted acoustic Doppler current profiler observations. J Geophys Res 97:769–788CrossRef
    Evans P, Mason-Jones A, Wilson C, Wooldridge C, O’Doherty T, O’Doherty D (2015) Constraints on extractable power from energetic tidal straits. Renew Energy 81:707–722CrossRef
    Fairley I, Evans P, Wooldridge C, Willis M, Masters I (2013) Evaluation of tidal stream resource in a potential array area via direct measurements. Renew Energy 57:70–78CrossRef
    Forget P (2015) Noise properties of HF radar measurement of ocean surface currents. Radio Sci 50(8):764–777CrossRef
    Gandin LS (1963) Objective analysis of meteorological fields. Gidrometizdat (GIMIZ), Leningrad (translated by Israel Program for Scientific Translations, Jerusalem, 1965, 238 pp.)
    Geyer WR, Signell R (1990) Measurements of tidal flow around a headland with a shipboard acoustic Doppler current profiler. J Geophys Res 95:3189–3197
    Goddijn-Murphy L, Woolf DK, Easton M (2013) Current patterns in the inner sound (Pentland Firth) from underway ADCP data. J Atmos Oceanic Tech 30(1):96–111CrossRef
    Gooch S, Thomson J, Polagye B, Meggitt D (2009) Site characterization for tidal power. In OCEANS 2009, MTS/IEEE Biloxi-Marine Technology for Our Future: Global and Local Challenges 1–10
    Haas KA, Fritz HM, French SP, Smith BT, Neary V (2011) Assessment of energy production potential from tidal streams in the United States. Available online at http://​energy.​gov/​sites/​prod/​files/​2013/​12/​f5/​1023527.​pdf
    Hamill TM, Whitaker JS, Snyder C (2001) Distance-dependent filtering of background error covariance estimates in an ensemble Kalman filter. Mon Weather Rev 129:2776–2790CrossRef
    Holdaway MR (1996) Spatial modeling and interpolation of monthly temperature using kriging. Climate Res 6:215–225CrossRef
    Jouanneau N, Sentchev A, Dumas F (2013) Numerical modelling of circulation and dispersion processes in Boulogne-sur-Mer harbour (Eastern English Channel): sensitivity to physical forcing and harbour design. Ocean Dyn 63:1321–1340CrossRef
    Kalnay E (2002) Atmospheric modeling, data assimilation and predictability. Cambridge University Press
    Lazure P, Dumas F (2008) An external–internal mode coupling for a 3D hydrodynamical model for applications at regional scale (MARS). Adv Water Resour 31:233–250CrossRef
    Lewis M, Neill SP, Robins PE, Hashemi MR (2015) Resource assessment for future generations of tidal-stream energy arrays. Energy 83:403–415CrossRef
    Li C, Armstrong S, Williams D. Residual eddies in a tidal channel. Estuar Coasts 29:147–158
    Liu Y, Weisberg RH, Merz CR (2014) Assessment of CODAR and WERA HF radars in mapping currents on the West Florida Shelf. J Atmos Oceanic Tech 31:1363–1382CrossRef
    Liu Y, Kerkering H, Weisberg RH (Eds) (2015) Coastal Ocean Observing Systems, Elsevier
    MacMahan J, Vennell R, Beatson R, Brown J, Reniers A (2012) Divergence-free spatial velocity flow field interpolator for improving measurements from ADCP-equipped small unmanned underwater vehicles. J Atmos Oceanic Tech 29(3):478–484CrossRef
    Neill SP, Hashemi MR, Lewis MJ (2014) The role of tidal asymmetry in characterizing the tidal energy resource of Orkney. Renew Energy 68:337–350CrossRef
    Old CP, Vennell R (2001) ADCP measurement of the velocity field of an ebb tidal jet. J Geophys Res 106:7037–7050CrossRef
    Plus M, Dumas F, Stanisière J-Y, Maurer D (2009) Hydrodynamic characterization of the Arcachon Bay, using model-derived descriptors. Cont Shelf Res 29:1008–1013CrossRef
    Quirapas, MA, Lin, H, Abundo, M, Brahim, S, Santos D (2015) Ocean renewable energy in Southeast Asia: a review. Renew Sust Energ Rev 41:799--817
    Simpson JH, Mitchelson-Jacob EG, Hill AE (1990) Flow structure in a channel from an acoustic Doppler current profiler. Cont Shelf Res 10:589–603CrossRef
    Thiébaux HJ, Pedder MA (1987) Spatial objective analysis with applications in atmospheric science, vol 1. Academic, London
    Vennell R (1994) Acoustic Doppler current profiler measurements of tidal phase and amplitude in Cook Strait, New Zealand. Cont Shelf Res 14:353–364CrossRef
    Vennell R (2006) ADCP measurements of momentum balance and dynamic topography in a constricted tidal channel. J Phys Oceanogr 36:177–188CrossRef
    Vennell R, Beatson R (2006) Moving vessel acoustic Doppler current profiler measurement of tidal stream function using radial basis functions. J Geophys Res 111:C09002. doi:10.​1029/​2005JC003321
    Vennell R, Beatson R (2009) A divergence-free spatial interpolator for large sparse velocity data sets. J Geophys Res 114:C10024. doi:10.​1029/​2008JC004973 CrossRef
    Weisberg RH, Liu Y, Merz CR, Virmani JI, Zheng L (2012) A critique of alternative power generation for Florida by mechanical and solar means. Mar Technol Soc J 46(5):12–23. doi:10.​4031/​MTSJ.​46.​5.​1 CrossRef
    Wunsch C (1996) The ocean circulation inverse problem. Cambridge University Press
  • 作者单位:Alexei Sentchev (1)
    Max Yaremchuk (2)

    1. University of Littoral - Côte d’Opale, CNRS, Univ. Lille, UMR 8187 LOG, Laboratoire d’Océanologie et de Géosciences, F 59000, Lille, France
    2. Naval Research Laboratory, Stennis Space Center, Bldg. 1009, Mississippi, MS, 39529, USA
  • 刊物类别:Earth and Environmental Science
  • 刊物主题:Earth sciences
    Oceanography
    Geophysics and Geodesy
    Meteorology and Climatology
    Fluids
    Structural Foundations and Hydraulic Engineering
  • 出版者:Springer Berlin / Heidelberg
  • ISSN:1616-7228
文摘
The tidal circulation in the semi-enclosed Boulogne harbour (eastern English Channel) is measured during the various stages of the tidal cycle with a low-cost towed Acoustic Doppler Current Profiler (ADCP) system for the first time. The system is equipped with an interpolation algorithm which allows reconstructing space-time evolution of the velocity field for surveys whose duration is comparable or larger than the typical time of tidal variation (1–2 h). The method employs space-time velocity covariances derived from a numerical simulation of the surveyed area by a high-resolution relocatable model “Model for Applications on Regional Scale” (MARS). The covariances are utilized by the optimal interpolation algorithm to obtain the most likely evolution of the velocity field under the constraints provided by the ADCP observations and their error statistics. Technically, the MARS model run provides the first guess (background) evolution of the velocity field in the surveyed area which is then corrected by the data in a statistically consistent manner as it explicitly takes into the account both observational and modeling errors. The quality of the velocity reconstruction was validated against independent bottom-mounted ADCP data, the background model evolution, and against the results of spatial interpolation by Kriging technique. All tests demonstrated significant (30 to 60 %) reduction of the model-data misfit for the velocity field obtained as a result of space-time optimal interpolation. Although the method was applied to recover surface circulation, it can be extended for assessment of the full 4D tidal flow dynamics using the data recorded throughout the entire water column.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700