用户名: 密码: 验证码:
Tightly Secure IBE Under Constant-Size Master Public Key
详细信息    查看全文
  • 刊名:Lecture Notes in Computer Science
  • 出版年:2017
  • 出版时间:2017
  • 年:2017
  • 卷:10174
  • 期:1
  • 页码:207-231
  • 丛书名:Public-Key Cryptography ?PKC 2017
  • ISBN:978-3-662-54365-8
  • 卷排序:10174
文摘
Chen and Wee [CRYPTO, 2013] proposed the first almost tightly and adaptively secure IBE in the standard model and left two open problems which called for a tightly secure IBE with (1) constant-size master public key and/or (2) constant security loss. In this paper, we propose an IBE scheme with constant-size master public key and tighter security reduction. This (partially) solves Chen and Wee’s first open problem and makes progress on the second one. Technically, our IBE scheme is built based on Wee’s petit IBE scheme [TCC, 2016] in the composite-order bilinear group whose order is product of four primes. The sizes of master public key, ciphertexts, and secret keys are not only constant but also nearly optimal as Wee’s petit IBE. We can prove its adaptive security in the multi-instance, multi-ciphertext setting [PKC, 2015] based on the decisional subgroup assumption and a subgroup variant of DBDH assumption. The security loss is \({\mathcal {O}}(\log q)\) where q is the upper bound of the total number of secret keys and challenge ciphertexts per instance. It’s much smaller than those for all known adaptively secure IBE schemes in a concrete sense.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700