用户名: 密码: 验证码:
Controlled hydrothermal synthesis and luminescent properties of Y2WO6:Eu3+ nanophosphors for light-emitting diodes
详细信息    查看全文
  • 作者:Jingang Li ; Zheyi Wu ; Xiaoyu Sun ; Xianwen Zhang…
  • 刊名:Journal of Materials Science
  • 出版年:2017
  • 出版时间:March 2017
  • 年:2017
  • 卷:52
  • 期:6
  • 页码:3110-3123
  • 全文大小:
  • 刊物类别:Chemistry and Materials Science
  • 刊物主题:Materials Science, general; Characterization and Evaluation of Materials; Polymer Sciences; Continuum Mechanics and Mechanics of Materials; Crystallography and Scattering Methods; Classical Mechanics;
  • 出版者:Springer US
  • ISSN:1573-4803
  • 卷排序:52
文摘
In this paper, Eu3+-doped yttrium tungstate (Y2WO6) nanophosphors with different morphologies have been synthesized by a hydrothermal method with the assistance of cetyltrimethyl ammonium bromide. X-ray diffraction (XRD), scanning electron microscopy, transmission electron microscopy, high-resolution transmission electron microscopy (HRTEM), selected area electron diffraction (SAED), and photoluminescence spectroscopy (PL) were used to characterize the products. The pH value of the starting solution plays a crucial role in the structures and morphologies of the samples. When the precursors synthesized under alkaline condition are annealed at 1100 °C in the air, the pure monoclinic Y2WO6 phase can be obtained. The results of HRTEM and SAED are consistent with those of the XRD patterns, confirming the high crystallinity of the products. A detailed study of the optical properties, including the UV–Vis diffuse reflection spectra, the excitation and emission spectra, CIE coordinate, and color purity of Y2WO6:Eu3+ nanophosphors with different doping concentrations, are presented here. The critical distance Rc and energy transfer mechanism for the concentration quenching of Eu3+ ions are discussed in detail. In addition, the decay time and the thermal stability of the samples have been also investigated elaborately. The PL properties of the as-synthesized materials indicate promising applications in UV-pumped red light-emitting diodes.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700