用户名: 密码: 验证码:
IFITM5 mutations and osteogenesis imperfecta
详细信息    查看全文
  • 作者:Nobutaka Hanagata
  • 关键词:IFITM5 ; Heterozygous mutation ; Osteogenesis imperfecta type V
  • 刊名:Journal of Bone and Mineral Metabolism
  • 出版年:2016
  • 出版时间:March 2016
  • 年:2016
  • 卷:34
  • 期:2
  • 页码:123-131
  • 全文大小:970 KB
  • 参考文献:1.Brass AL, Huang IC, Benita Y, John SP, Krishnan MN, Feeley EM, Ryan BJ, Weyer JL, van der Weyden L, Fikrig E, Adams DJ, Xavier RJ, Farzan M, Elledge SJ (2009) The IFITM proteins mediate cellular resistance to influenza A H1N1 virus, West Nile virus, and dengue virus. Cell 139:1243–1254CrossRef PubMed PubMedCentral
    2.Everitt AR, Clare S, Pertel T, John SP, Wash RS et al (2013) IFITM3 restricts the mobidity and mortality associated with influenza. Nature 484:519–523CrossRef
    3.Bailey CC, Huang IC, Kam C, Farzan M (2012) Ifitm3 limits the severity of acute influenza in mice. PLoS Pathog 8:e1002909CrossRef PubMed PubMedCentral
    4.Huang IC, Bailey CC, Weyer JL, Radoshitzky SR, Becker MM, Chiang JJ, Brass AL, Ahmed AA, Chi X, Dong L, Longobardi LE, Boltz D, Kuhn JH, Elledge SJ, Bavari S, Denison MR, Choe H, Farzan M (2011) Distinct patterns of IFITM-mediated restriction of filoviruses, SARS coronavirus and influenza A virus. PLoS Pathog 7:e1001258CrossRef PubMed PubMedCentral
    5.Moffatt P, Salois P, Gaumond MH, St-Amant N, Godin E, Lanctot C (2002) Engineered viruses to select genes encoding secreted and membrane-bound proteins in mammalian cells. Nucleic Acids Res 30:4285–4294CrossRef PubMed PubMedCentral
    6.Hanagata N, Takemura T, Monkawa A, Ikoma T, Tanaka J (2007) Phenotype and gene expression pattern of osteoblast-like cells cultured on polystyrene and hydroxyapatite with pre-adsorbed type-I collagen. J Biomed Mater Res Part A 83A:362–371CrossRef
    7.Li K, Markosyan RM, Zheng YM, Golfetto O, Bungart B, Li M, Ding S, He Y, Liang C, Lee JC, Gratton E, Cohen FS, Liu SL (2013) IFITM proteins restrict viral membrane hemifusion. PLoS Pathog 9:e1003124CrossRef PubMed PubMedCentral
    8.Feeley EM, Sims JS, John SP, Chin CR, Pertel T, Chen LM, Gaiha GD, Ryan BJ, Donis RO, Elledge SJ, Brass AL (2011) IFITM3 inhibits influenza A virus infection by preventing cytosolic entry. PLoS Pathog 7:e1002337CrossRef PubMed PubMedCentral
    9.Moffatt P, Gaumond MH, Salois P, Sellin K, Beestte MC, Godin E, de Oliveira PT, Atkins GJ, Nanci A, Thomas G (2008) Bril: a novel bone-specific modulator of mineralization. J Bone Miner Res 23:1497–1508CrossRef PubMed
    10.Patoine A, Gaumond MH, Jaiswal PK, Fassier F, Rauch F, Moffatt P (2014) Topological mapping of BRIL reveals a type II orientation and effects of osteogenesis imperfect mutations on its cellular destination. J Bone Miner Res 29:2004–2016CrossRef PubMed
    11.Hanagata N, Li X, Morita H, Takemura T, Li J, Minowa T (2011) Characterization of the osteoblast-specific transmembrane protein IFITM5 and analysis of IFITM5-deficient mice. J Bone Miner Metab 29:279–290CrossRef PubMed
    12.Cho TJ, Lee KE, Lee SK, Song SJ, Kim KJ, Jeon D, Lee G, Kim HN, Lee HR, Eom HH, Lee ZH, Kim OH, Park WY, Park SS, Ikegawa S, Yoo WJ, Choi IH, Kim JW (2012) A single recurrent mutation in the 5′-UTR of IFITM5 causes osteogenesis imperfecta type V. Am J Hum Genet 91:343–348CrossRef PubMed PubMedCentral
    13.Semler O, Garbes L, Keupp K, Swan D, Zimmermann K, Becker J, Iden S, Wirth B, Eysel P, Koerber F, Schoenau E, Bohlander SK, Wollnik B, Netzer C (2012) A mutation in the 5′-UTR of IFITM5 creates an in-frame start codon and causes autosomal-dominant osteogenesis imperfecta type V with hyperplastic callus. Am J Hum Genet 91:349–357CrossRef PubMed PubMedCentral
    14.Koyer-Kuhn H, Semler O, Garbes L, Zimmermann K, Becker J, Wollnik B, Schoenau E, Netzer C (2014) A nonclassical IFITM5 mutation located in the coding region causes severe osteogenesis imperfect with prenatal onset. J Bone Miner Res 29:1387–1391CrossRef
    15.Guillen-Navarro E, Ballesta-Martinez MJ, Valencia M, Bueno AM, Martinez-Glez V, Lopez-Gonzalez V, Burnyte B, Utkus A, Lapunzia P, Ruiz-Perez VL (2014) Two mutations in IFITM5 causing distinct form of osteogenesis imperfect. Am J Med Genet A 164A:1136–1142CrossRef PubMed
    16.Farber CR, Reich A, Barnes AM, Becerra P, Rauch F, Cabral WA, Bae A, Quinlan A, Glorieux FH, Clemens TL, Marini JC (2014) A novel IFITM5 mutation in severe atypical osteogenesis imperfecta type VI impairs osteoblast production of pigment epithelium-derived factor. J Bone Miner Res 29:1402–1411CrossRef PubMed PubMedCentral
    17.Marini JC, Blissett AR (2013) New genes in bone development: what’s new in osteogenesis imperfect. J Clin Endocrinol Metab 98:3095–3103CrossRef PubMed PubMedCentral
    18.Dalgleish R (1997) The human type I collagen mutation database. Nucleic Acids Res 25:181–187CrossRef PubMed PubMedCentral
    19.Dalgleish R (1998) The human type I collagen mutation database 1998. Nucleic Acids Res 26:253–255CrossRef PubMed PubMedCentral
    20.Marini JC, Forlino A, Cabral WA, Barnes AM, San Antonio JD et al (2007) Consortium for osteogenesis imperfecta mutations in the helical domain of type I collagen: regions rich in lethal mutations align with collagen binding sites for integrins and proteoglycans. Hum Mutat 28:209–221CrossRef PubMed PubMedCentral
    21.Sykes B, Francis MJ, Smith R (1977) Altered relation of two collagen types in osteogenesis inmperfecta. N Engl J Med 296:1200–1203CrossRef PubMed
    22.Trelstad RL, Rubin D, Gross J (1977) Osteogenesis imperfecta congenital: evidence for a generalized molecular disorder of collagen. Lab Invest 36:501–508PubMed
    23.Chu ML, Williams CJ, Pepe G, Hirsch JL, Prockop DJ, Ramirez F (1983) Internal deletion in a collagen gene in a perinatal lethal form of osteogenesis imperfecta. Nature 304:78–80CrossRef PubMed
    24.Steinmann B, Rao VH, Vogel A, Bruckner P, Gitzelmann R, Byers PH (1984) Cysteine in the triple-helical domain of one allelic product of the alpha 1 (I) gene of type I collagen produces a lethal form of osteogenesis imperfecta. J Biol Chem 259:11129–11138PubMed
    25.Cohn DH, Byers PH, Steinmann B, Gelinas RE (1986) Lethal osteogenesis imperfecta resulting from a single nucleotide change in one human pro plpha 1(I) collagen allele. Proc Natl Acad Sci USA 83:6045–6047CrossRef PubMed PubMedCentral
    26.Sykes B, Ogilvie D, Wordsworth P, Wallis G, Mathew C, Beighton P, Nicholls A, Pope FM, Thompson E, Tsipouras P, Schwartz R, Jensson O, Arnason A, Børresen A-L, Heiberg A, Frey D, Steinman B (1990) Consistent linkage of dominantly inherited osteogenesis imperfecta to the type I collagen loci: COL1A1 and COL1A2. Am J Hum Genet 46:293–307PubMed PubMedCentral
    27.Morello R, Bertin TK, Chen Y, Hicks J, Tonachini L, Monticone M, Castagnola P, Rauch F, Glorieux FH, Vranka J, Bachinger HP, Pace JM, Schwarze U, Byers PH, Weis M, Fernandes RJ, Eyre DR, Yao Z, Boyce BF, Lee B (2006) CRTAP is required for prolyl 3-hydroxylation and mutations cause recessive osteogenesis imperfecta. Cell 127:291–304CrossRef PubMed
    28.Cabral WA, Barnes AM, Adeyemo A, Cushing K, Chitayat D, Porter FD, Panny SR, Gulamali-Majid F, Tishkoff SA, Rebbeck TR, Gueye SM, Bailey-Wilson JE, Brody LC, Rotimi CN, Marini JC (2012) A founder mutation in LEPRE1 carried by 1.5 % of West Africans and 0.4 % of African Americans causes lethal recessive osteogenesis imperfecta. Genet Med Off J Am Coll Med Genet 14:543–551
    29.van Dijk FS, Nesbitt IM, Zwikstra EH, Nikkels PG, Piersma SR, Fratantoni SA, Jimenez CR, Huizer M, Morsman AC, Cobben JM, van Roij MH, Elting MW, Verbeke JI, Wijnaendts LC, Shaw NJ, Hogler W, McKeown C, Sistermans EA, Dalton A, Meijers-Heijboer H, Pals G (2009) PPIB mutations cause severe osteogenesis imperfecta. Am J Hum Genet 85:521–527CrossRef PubMed PubMedCentral
    30.Christiansen HE, Schwarze U, Pyott SM, AlSwaid A, Al Balwi M, Alrasheed S, Pepin MG, Weis MA, Eyre DR, Byers PH (2010) Homozygosity for a missense mutation in SERPINH1, which encodes the collagen chaperone protein HSP47, results in severe recessive osteogenesis imperfecta. Am J Hum Genet 86:389–398CrossRef PubMed PubMedCentral
    31.Alanay Y, Avaygan H, Camacho N, Utine GE, Boduroglu K et al (2010) Mutations in the gene encoding the RER protein FKBP65 cause autosomal-recessive osteogenesis imperfect. Am J Hum Genet 86:551–559CrossRef PubMed PubMedCentral
    32.Drögemüller C, Becker D, Brunner A, Haase B, Kircher P, Seeliger F, Fehr M, Baumann U, Lindblad-Toh K, Leeb T (2009) A missense mutation in the SERPINH1 gene in dachshunds with osteogenesis imperfecta. PLoS Genet 5:e1000579CrossRef PubMed PubMedCentral
    33.Christiansen HE, Schwarze U, Pyott SM, AlSwaid A, Balwi MA, Alrasheed S, Pepin MG, Weis MA, Eyre DR, Byers PH (2010) Homozygosity for a missense mutation in SERPINH1, which encodes the collagen chaperone protein HSP47, results in severe recessive osteogenesis imperfecta. Am J Hum Genet 86:389–398CrossRef PubMed PubMedCentral
    34.Martínez-Glez V, Valencia M, Caparrós-Martín JA, Aglan M, Temtamy S, Tenorio J, Pulido V, Lindert U, Rohrbach M, Eyre D, Giunta C, Lapunzina P, Ruiz-Perez VL (2012) Identification of a mutation causing deficient BMP1/mTLD proteolytic activity in autosomal recessive osteogenesis imperfecta. Hum Mutat 33:343–350CrossRef PubMed PubMedCentral
    35.Homan EP, Rauch F, Grafe I, Lietman C, Doll JA, Dawson B, Bertin T, Napierala D, Morello R, Gibbs R, White L, Miki R, Cohn DH, Crawford S, Travers R, Glorieux FH, Lee B (2011) Mutations in SERPINF1 cause osteogenesis imperfecta type VI. J Bone Miner Res 26(12):2798–2803CrossRef PubMed PubMedCentral
    36.Becker J, Semler O, Gilissen C, Li Y, Bolz HJ, Giunta C, Bergmann C, Rohrbach M, Koerber F, Zimmermann K, de Vries P, Wirth B, Schoenau E, Wollnik B, Veltman JA, Hoischen A, Netzer C (2011) Exome sequencing identifies truncating mutations in human SERPINF1 in autosomal-recessive osteogenesis imperfecta. Am J Hum Genet 88:362–371CrossRef PubMed PubMedCentral
    37.Lapunzina P, Aglan M, Temtamy S, Caparrós-Martín JA, Valencia M, Letón R, Martínez-Glez V, Elhossini R, Amr K, Vilaboa N, Ruiz-Perez VL (2010) Identification of a frameshift mutation in Osterix in a patient with recessive osteogenesis imperfecta. Am J Hum Genet 87:110–114CrossRef PubMed PubMedCentral
    38.Shaheen R, Alazami AM, Alshammari MJ, Faqeih E, Alhashmi N, Mousa N, Alsinani A, Ansari S, Alzahrani F, Al-Owain M, Alzayed ZS, Alkuraya FS (2012) Study of autosomal recessive osteogenesis imperfecta in Arabia reveals a novel locus defined by TMEM38B mutation. J Med Genet 49:630–635CrossRef PubMed
    39.Volodarsky M, Markus B, Cohen I, Staretz-Chacham O, Flusser H, Landau D, Shelef I, Langer Y, Birk OS (2013) A deletion mutation in TMEM38B associated with autosomal recessive osteogenesis imperfecta. Hum Mutat 34:582–586PubMed
    40.Keupp K, Beleggia F, Kayserili H, Staretz-Chacham O, Flusser H, Landau D, Shelef I, Langer Y, Birk OS (2013) Mutations in WNT1 cause different forms of bone fragility. Am J Hum Genet 92:565–574CrossRef PubMed PubMedCentral
    41.Fahiminiya S, Majewski J, Mort J, Moffatt P, Glorieux FH, Rauch F (2013) Mutations in WNT1 are a cause of osteogenesis imperfecta. J Med Genet 50:345–348CrossRef PubMed
    42.Pyott SM, Tran TT, Leistritz DF, Pepin MG, Mendelsohn NJ, Temme RT, Fernandez BA, Elsayed SM, Elsobky E, Verma I, Nair S, Turner EH, Smith JD, Jarvik GP, Byers PH (2013) WNT1 mutations in families affected by moderately severe and progressive recessive osteogenesis imperfecta. Am J Hum Genet 92:590–597CrossRef PubMed PubMedCentral
    43.Glorieux FH, Rauch F, Plotkin H, Ward L, Travers R, Roughley P, Lalic L, Glorieux DF, Fassier F, Bishop NJ (2000) Type V osteogenesis imperfecta: a new form of brittle bone disease. J Bone Miner Res 15:1650–1658CrossRef PubMed
    44.Rauch F, Glorieux FH (2004) Osteogenesis imperfecta. Lancet 363:1377–1385CrossRef PubMed
    45.Rauch F, Moffatt P, Cheung M, Roughley P, Lalic L, Lund AM, Ramirez N, Fahiminiya S, Majewski J, Glorieux FH (2013) Osteogenesis imperfecta type V: Marker pheneotypic variability despite the presence of the IFITM5 c.-14C>T mutation in all patients. J Med Genet 50:21–24CrossRef PubMed
    46.Shapiro JR, Lietman C, Grover M, Lu JT, Nagamani SC, Dawson BC, Baldridge DM, Bainbridge MN, Cohn DH, Blazo M, Roberts TT, Brennen FS, Wu Y, Gibbs RA, Melvin P, Campeau PM, Lee BH (2013) Phenotypic variability of osteogenesis imperfecta type V caused by an IFITM5 mutation. J Bone Miner Res 28:1523–1530CrossRef PubMed PubMedCentral
    47.Cheung MS, Glorieux FH, Rauch F (2007) Natural history of hyperplastic callus formation in osteogenesis imperfecta type V. J Bone Miner Res 22:1181–1186CrossRef PubMed
    48.Zeitlin L, Rauch F, Travers R, Munns C, Glorieux FH (2006) The effect of cyclical intravenous pamidronate in children and adolescents with osteogenesis imperfecta type V. Bone 38:13–20CrossRef PubMed
    49.Fitzgerald J, Holden P, Wright H, Wilmot B, Hata A, Steiner RD, Basel D (2013) Phenotypic variability in individuals with type V osteogenesis imperfecta with identical IFITM5 mutations. J Rare Disord 1:37–42
    50.Arundel P, Offiah A, Bishop NJ (2011) Evolution of the radiographic appearance of the metaphyses over the first year of life in type V osteogenesis imperfecta: clues to pathogenesis. J Bone Miner Res 26:894–898CrossRef PubMed
    51.Glorieux FH, Ward LM, Rauch F, Lalic L, Roughley PJ, Travers R (2002) Osteogenesis imperfecta type VI: a form of brittle bone disease with a mineralization defect. J Bone Miner Res 17:30–38CrossRef PubMed
    52.Campeau PM, Lee BH (2013) Phenotyic variability of osteogenesis imperfect type V caused by an IFITM5 mutation. J Bone Miner Res 28:1523–1530CrossRef PubMed PubMedCentral
    53.Balasubramanian M, Parker MJ, Dalton A, Giunta C, Lindert U, Peres LC, Wagner BE, Arundel P, Offiah A, Bishop NJ (2013) Genotype-phenotype study in type V osteogenesis imperfecta. Clin Dysmorphol 22:93–101CrossRef PubMed
    54.Takagi M, Sato S, Hara K, Tani C, Miyazaki O, Nishimura G, Hasegawa T (2013) A recurrent mutation in the 5′-UTR of IFITM5 causes osteogenesis imperfecta type V. Am J Med Genet A 161A:1980–1982CrossRef PubMed
    55.Zhang Z, Li M, He JW, Fu WZ, Zhang CQ, Zhang ZL (2013) Phenotype and genotype analysis of Chinese patients with osteogenesis imperfect type V. PLoS One 8:e72337CrossRef PubMed PubMedCentral
    56.Grover M, Campeau PM, Lietman CD, Lu JT, Gibbs RA, Schlesinger AE, Lee BH (2013) Osteogenesis imperfecta type without features of type V caused by a mutation in the IFITM5 gene. J Bone Miner Res 28:2333–2337CrossRef PubMed PubMedCentral
    57.Kim OH, Jin DK, Kosaki K, Kim JW, Cho SY, Yoo WJ, Choi IH, Nishimura G, Ikegawa S, Cho TJ (2013) Osteogenesis imperfecta type V: Clinical and radiographic manifestations in mutation confirmed patients. Am J Med Genet A 161A:1972–1979CrossRef PubMed
    58.Lazaus S, Mclnerney-Leo AM, McKenzie FA, Baynam G, Beoley S, Cavan BV, Munns CF, Pruijs JEH, Sillence D, Terhal PA, Pryce K, Brown M, Zankl A, Thomas G, Duncan EL (2014) The IFITM5 mutation c.-14C>T results in an elongated transcript expressed in human bone; and causes varying phenotypic severity of osteogenesis imperfecta type V. BMC Musculoskelet Disord 15:107CrossRef
    59.Lange UC, Adams DJ, Lee C, Barton S, Schneider R, Bradley A, Surani A (2008) Normal germ line establishment in mice carrying a deletion of the Ifitm/Fragilis gene family cluster. Mol Cell Biol 28:4688–4696CrossRef PubMed PubMedCentral
    60.Lietman CD, Marom R, Munivez E, Bertin TK, Jiang M-M, Chen Y, Dawson B, Weis MA, Eyre D, Lee B (2015) A transgenic mouse model of OI type V supports a neomorphic mechanism of the IFITM5 mutation. J Bone Miner Res 30:498–507CrossRef PubMedCentral
    61.Becerra SP, Notario V (2013) The effects of PEDF on cancer biology: mechanisms of action and therapeutic potential. Nat Rev Cancer 13:258–271CrossRef PubMed PubMedCentral
    62.Borg ML, Andrews ZB, Duh EJ, Zechner R, Meikle PJ, Watt MJ (2011) Pigment epithelium-derived factor regulates lipid metabolism via adipose triglyceride lipase. Diabetes 60:1458–1466CrossRef PubMed PubMedCentral
    63.Dawson DW, Volpert OV, Gillis P, Crawford SE, Xu H, Benedict W, Bouck NP (1999) Pigment epithelium-derived factor: a potent inhibitor of angiogenesis. Science 285:245–248CrossRef PubMed
    64.Filleur S, Nelius T, de Riese W, Kennedy RC (2009) Characterization of PEDF: a multi-functional serpin family protein. J Cell Biol 106:769–775
    65.Bogan R, Riddle R, Li Z, Kumar S, Nandal A, Faugere M-C, Boskey A, Crawford SE, Clemens T (2013) A mouse model for human osteogenesis imperfecta type VI. J Bone Miner Res 28:1531–1536CrossRef PubMed PubMedCentral
    66.Gattu AK, Swenson ES, Iwakiri Y, Samuel VT, Troiano N, Berry R, Church CD, Rodeheffer MS, Carpenter TO, Chung C (2013) Determination of mesenchymal stem cell fate by pigment epithelium-derived factor (PEDF) results in increased adiposity, reduced bone mineral content. FASEB J 27:4384–4394CrossRef PubMed PubMedCentral
    67.Li F, Song N, Tombran-Tink J, Niyibizi C (2013) Pigment epithelium derived factor enhances differentiation and mineral deposition of human mesenchymal stem cells. Stem Cell 31:2714–2723CrossRef
    68.Hanagata N, Li X (2011) Osteoblast-enriched membrane protein IFITM5 regulates the association of CD9 with an FKBP11-CD81-FPRP complex and stimulates expression of interferon-induced genes. Biochem Biophys Res Commun 409:378–384CrossRef PubMed
    69.Tsukamoto T, Li X, Morita H, Minowa T, Aizawa T, Hanagata N, Demura M (2013) Role of S-palmitoylation on IFITM5 for the interaction with FKBP11 in osteoblast cells. PLoS One 8:e75831CrossRef PubMed PubMedCentral
    70.Kelley BP, Malfait F, Bonafe L, Baldridge D, Homan E, Symoens S, Willaert A, Elcioglu N, Maldergem LV, Verellen-Dumoulin C, Gillerot Y, Napierala D, Krakow D, Beighton P, Superti-Furga A, Paepe AD, Lee B (2011) Mutations in FKBP10 cause recessive osteogenesis imperfecta and Bruck syndrome. J Bone Miner Res 26:666–672CrossRef PubMed PubMedCentral
    71.Schwarze U, Cundy T, Pyott SM, Christiansen HE, Hegde MR et al (2013) Mutations in FKBP10, which result in Bruck syndrome and recessive forms of osteogenesis imperfecta, inhibit the hydroxylation of telopeptide lysines in bone collagen. Hum Mol Genet 22:1–17CrossRef PubMed PubMedCentral
    72.Steinlein O, Aichinger E, Trucks H, Sander T (2011) Mutations in FKBP10 can cause a severe form of isolated osteogenesis imperfecta. BMC Med Genet 12:152CrossRef PubMed PubMedCentral
    73.Lietman C, Rajagopal A, Homan EP, Munivez E, Jiang M-M, Bertin TK, Chen Y, Hicks J, Weis M, Eyre D, Lee B, Krakow D (2014) Connective tissue alterations in FKBP10 −/− mice. Hum Mol Genet 23:4822–4831CrossRef PubMed PubMedCentral
    74.Smotry JE, Linder ME (2004) Palmitoylation of intracellular signaling proteins: regulation and function. Annu Rev Biochem 73:559–587CrossRef
    75.Ahearn IM, Tsai FD, Court H, Zhou M, Jennings BC, Ahmed M, Fehrenbacher N, Linder ME, Phillip MR (2011) FKBP12 binds to acylated H-Ras and promotes depalmitoylation. Mol Cell 47:173–185CrossRef
    76.Goodwin JS, Drake KR, Rogers C, Wright L, Lippincott-Schwartz J, Phillips MR, Kenworthy AK (2005) Depalmitoylated Ras traffics to and from the Gorgi complex via a nonvesicular pathway. J Cell Biol 170:261–272CrossRef PubMed PubMedCentral
    77.Rocks O, Peyker A, Kahms M, Verveer PJ, Koerner C, Lumbierres M, Kuhlmann J, Waldmann H, Wittinghofer A, Bastiaens PI (2005) An acylation cycle regulates localization and activity of palmitoylated Ras isoforms. Science 307:1746–1752CrossRef PubMed
    78.Rocks O, Gerauer M, Vartak N, Koch S, Huang ZP, Pechivanis M, Kuhlmann J, Brunsveld L, Chandra A, Ellinger B, Waldmann H, Bastiaens PI (2010) The palmitoylation machinery is a spatially organizing system for peripheral membrane proteins. Cell 141:458–471CrossRef PubMed
    79.Takeda Y, He P, Tachibana I, Zhou B, Miyado K, Kaneko H, Suzuki M, Minami S, Iwasaki T, Goya S, Kijima T, Kumagai T, Yoshida M, Osaki T, Komori T, Mekada E, Kawase I (2008) Double deficiency of tetraspanins CD9 and CD81 alters cell motility and protease production of macrophages and causes chronic obstructive pulmonary disease-like phenotype in mice. J Biol Chem 283:26089–26097CrossRef PubMed PubMedCentral
    80.Reich A, Bae AS, Barnes AM, Cabral WA, Hinek A, Stimec J, Hill SC, Chitayat D, Marini JC (2015) Type V OI primary osteoblasts display increased mineralization despite decreased COL1A1 expression. J Clin Endocrinol Metab 100:E325–E332CrossRef PubMed PubMedCentral
  • 作者单位:Nobutaka Hanagata (1) (2)

    1. Nanotechnology Innovation Station, National Institute for Materials Science, 1-2-1 Sengen, Tsukuba, Ibaraki, 305-0047, Japan
    2. Graduate School of Life Science, Hokkaido University, N10W8, Kita-ku, Sapporo, Hokkaido, 060-0812, Japan
  • 刊物类别:Medicine
  • 刊物主题:Medicine & Public Health
    Metabolic Diseases
    Orthopedics
    Internal Medicine
  • 出版者:Springer Japan
  • ISSN:1435-5604
文摘
Interferon-induced transmembrane protein 5 (IFITM5) is an osteoblast-specific membrane protein that has been shown to be a positive regulatory factor for mineralization in vitro. However, Ifitm5 knockout mice do not exhibit serious bone abnormalities, and thus the function of IFITM5 in vivo remains unclear. Recently, a single point mutation (c.-14C>T) in the 5′ untranslated region of IFITM5 was identified in patients with osteogenesis imperfecta type V (OI-V). Furthermore, a single point mutation (c.119C>T) in the coding region of IFITM5 was identified in OI patients with more severe symptoms than patients with OI-V. Although IFITM5 is not directly involved in the formation of bone in vivo, the reason why IFITM5 mutations cause OI remains a major mystery. In this review, the current state of knowledge of OI pathological mechanisms due to IFITM5 mutations will be reviewed.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700