用户名: 密码: 验证码:
Impact of Slip Cycles on the Operation Modes and?Efficiency of Molecular Motors
详细信息    查看全文
文摘
Kinesin is a motor molecule that moves processively on microtubule tracks and is involved in active intracellular transport processes. For small loads, it is powered by the hydrolysis of one ATP molecule per step. Here we extent our previously introduced network theory in order to study the possibility of two different mechanical stepping transitions and the general behavior of the motor’s efficiency. Our theory shows explicitly how chemical and mechanical slip cycles emerge that weaken the coupling between ATP hydrolysis and mechanical stepping. Near chemomechanical equilibrium, the motor efficiency η may vary between η=1 for tight coupling and η=0 for loose coupling, depending on the relevance of the slip cycles. Far from chemomechanical equilibrium, on the other hand, the motor efficiency is found to decay as 1/Δμ with increasing Δμ irrespective of the presence of slip cycles, where Δμ represents the reaction free enthalpy or chemical potential difference per ATP hydrolysis.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700