用户名: 密码: 验证码:
Glucomannan-mediated facile synthesis of gold nanoparticles for catalytic reduction of 4-nitrophenol
详细信息    查看全文
  • 作者:Zhao Gao (4)
    Rongxin Su (4) (6)
    Renliang Huang (5)
    Wei Qi (4) (6)
    Zhimin He (4)

    4. State Key Laboratory of Chemical Engineering
    ; School of Chemical Engineering and Technology ; Tianjin University ; Tianjin ; 300072 ; People鈥檚 Republic of China
    6. Collaborative Innovation Center of Chemical Science and Engineering (Tianjin)
    ; Tianjin ; 300072 ; People鈥檚 Republic of China
    5. School of Environmental Science and Engineering
    ; Tianjin University ; Tianjin ; 300072 ; People鈥檚 Republic of China
  • 关键词:Gold nanoparticles ; Catalysis ; Composites ; Glucomannan ; 4 ; Nitrophenol
  • 刊名:Nanoscale Research Letters
  • 出版年:2014
  • 出版时间:December 2014
  • 年:2014
  • 卷:9
  • 期:1
  • 全文大小:1,256 KB
  • 参考文献:1. Hu, M, Chen, J, Li, Z-Y, Au, L, Hartland, GV, Li, X, Marquez, M, Xia, Y (2006) Gold nanostructures: engineering their plasmonic properties for biomedical applications. Chem Soc Rev 35: pp. 1084-1094 CrossRef
    2. Daniel, MC, Astruc, D (2004) Gold nanoparticles: assembly, supramolecular chemistry, quantum-size-related properties, and applications toward biology, catalysis, and nanotechnology. Chem Rev 104: pp. 293-346 CrossRef
    3. Jain, PK, Huang, X, El-Sayed, IH, El-Sayed, MA (2008) Noble metals on the nanoscale: optical and photothermal properties and some applications in imaging, sensing, biology, and medicine. Acc Chem Res 41: pp. 1578-1586 CrossRef
    4. Frens, G (1973) Controlled nucleation for the regulation of the particle size in monodisperse gold suspensions. Nature 241: pp. 20-22
    5. Yu, Y-Y, Chang, S-S, Lee, C-L, Wang, CC (1997) Gold nanorods: electrochemical synthesis and optical properties. J Phys Chem B 101: pp. 6661-6664 CrossRef
    6. Sau, TK, Pal, A, Jana, N, Wang, Z, Pal, T (2001) Size controlled synthesis of gold nanoparticles using photochemically prepared seed particles. J Nanoparticle Res 3: pp. 257-261 CrossRef
    7. Shankar, SS, Rai, A, Ankamwar, B, Singh, A, Ahmad, A, Sastry, M (2004) Biological synthesis of triangular gold nanoprisms. Nat Mater 3: pp. 482-488 CrossRef
    8. Yilmaz, M, Turkdemir, H, Kilic, MA, Bayram, E, Cicek, A, Mete, A, Ulug, B (2011) Biosynthesis of silver nanoparticles using leaves of Stevia rebaudiana. Mater Chem Phys 130: pp. 1195-1202 CrossRef
    9. Bar, H, Bhui, DK, Sahoo, GR, Sarkar, P, De, SR, Misra, A (2009) Green synthesis of silver nanoparticles using latex of Jatropha curcas. Colloid Surface Physicochem Eng Aspect 339: pp. 134-139 CrossRef
    10. Chandran, SP, Chaudhary, M, Pasricha, R, Ahmad, A, Sastry, M (2006) Synthesis of gold nanotriangles and silver nanoparticles using Aloe vera plant extract. Biotechnol Prog 22: pp. 577-583 CrossRef
    11. Gangula, A, Podila, R, Ramakrishna, M, Karanam, L, Janardhana, C, Rao, AM (2011) Catalytic reduction of 4-nitrophenol using biogenic gold and silver nanoparticles derived from Breynia rhamnoides. Langmuir 27: pp. 15268-15274 CrossRef
    12. Choi, Y, Choi, MJ, Cha, SH, Kim, YS, Cho, S, Park, Y (2014) Catechin-capped gold nanoparticles: green synthesis, characterization, and catalytic activity toward 4-nitrophenol reduction. Nanoscale Res Lett 9: pp. 103 CrossRef
    13. Kim, HK, Choi, MJ, Cha, SH, Koo, YK, Jun, SH, Cho, S, Park, Y (2013) Earthworm extracts utilized in the green synthesis of gold nanoparticles capable of reinforcing the anticoagulant activities of heparin. Nanoscale Res Lett 8: pp. 542 CrossRef
    14. Slocik, JM, Naik, RR, Stone, MO, Wright, DW (2005) Viral templates for gold nanoparticle synthesis. J Mater Chem 15: pp. 749-753 CrossRef
    15. Agnihotri, M, Joshi, S, Kumar, AR, Zinjarde, S, Kulkarni, S (2009) Biosynthesis of gold nanoparticles by the tropical marine yeast Yarrowia lipolytica NCIM 3589. Mater Lett 63: pp. 1231-1234 CrossRef
    16. Mukherjee, P, Senapati, S, Mandal, D, Ahmad, A, Khan, MI, Kumar, R, Sastry, M (2002) Extracellular synthesis of gold nanoparticles by the fungus Fusarium oxysporum. Chem Bio Chem 3: pp. 461-463 CrossRef
    17. Liang, M, Wang, L, Su, R, Qi, W, Wang, M, Yu, Y, He, Z (2013) Synthesis of silver nanoparticles within cross-linked lysozyme crystals as recyclable catalysts for 4-nitrophenol reduction. Catal Sci Technol 3: pp. 1910-1914 CrossRef
    18. Bassett, DC, Grover, LM, Muller, FA, McKee, MD, Barralet, JE (2011) Serum protein controlled nanoparticle synthesis. Adv Funct Mater 21: pp. 2968-2977 CrossRef
    19. Slocik, JM, Stone, MO, Naik, RR (2005) Synthesis of gold nanoparticles using multifunctional peptides. Small 1: pp. 1048-1052 CrossRef
    20. Chen, C-L, Zhang, P, Rosi, NL (2008) A new peptide-based method for the design and synthesis of nanoparticle superstructures: construction of highly ordered gold nanoparticle double helices. J Am Chem Soc 130: pp. 13555-13557 CrossRef
    21. Huang, HZ, Yang, XR (2004) Synthesis of chitosan-stabilized gold nanoparticles in the absence/presence of tripolyphosphate. Biomacromolecules 5: pp. 2340-2346 CrossRef
    22. Huang, HZ, Yang, XR (2004) Synthesis of polysaccharide-stabilized gold and silver nanoparticles: a green method. Carbohydr Res 339: pp. 2627-2631 CrossRef
    23. Raveendran, P, Fu, J, Wallen, SL (2003) Completely "green" synthesis and stabilization of metal nanoparticles. J Am Chem Soc 125: pp. 13940-13941 CrossRef
    24. He, JH, Kunitake, T, Nakao, A (2003) Facile in situ synthesis of noble metal nanoparticles in porous cellulose fibers. Chem Mater 15: pp. 4401-4406 CrossRef
    25. Z-m, Q, H-s, Z, Matsuda, N, Honma, I, Shimada, K, Takatsu, A, Kato, K (2004) Characterization of gold nanoparticles synthesized using sucrose by seeding formation in the solid phase and seeding growth in aqueous solution. J Phys Chem B 108: pp. 7006-7011 CrossRef
    26. Wootton, AN, Luker-Brown, M, Westcott, RJ, Cheetham, PSJ (1993) The extraction of a glucomannan polysaccharide from konjac corms (elephant yam, Amorphophallus rivierii). J Sci Food Agric 61: pp. 429-433 CrossRef
    27. Alonso-Sande, M, Teijeiro-Osorio, D, Remunan-Lopez, C, Alonso, MJ (2009) Glucomannan, a promising polysaccharide for biopharmaceutical purposes. Eur J Pharm Biopharm 72: pp. 453-462 CrossRef
    28. Dav茅, V, McCarthy, SP (1997) Review of konjac glucomannan. J Polymer Environ 5: pp. 237-241
    29. Zhang, YQ, Xie, BJ, Gan, X (2005) Advance in the applications of konjac glucomannan and its derivatives. Carbohydr Polym 60: pp. 27-31 CrossRef
    30. Ji, X, Song, X, Li, J, Bai, Y, Yang, W, Peng, X (2007) Size control of gold nanocrystals in citrate reduction: the third role of citrate. J Am Chem Soc 129: pp. 13939-13948 CrossRef
    31. Zhang, H, Yoshimura, M, Nishinari, K, Williams, MAK, Foster, TJ, Norton, IT (2001) Gelation behaviour of konjac glucomannan with different molecular weights. Biopolymers 59: pp. 38-50 CrossRef
    32. Chen, J, Zhou, J, Zhang, L, Nakamura, Y, Norisuye, T (1998) Chemical structure of the water-insoluble polysaccharide isolated from the fruiting body of Ganoderma lucidum. Polymer journal 30: pp. 838-842 CrossRef
    33. MAEKAJI, K (1974) The mechanism of gelation of konjac mannan. Agric Biol Chem 38: pp. 315-321 CrossRef
    34. Huang, L, Takahashi, R, Kobayashi, S, Kawase, T, Nishinari, K (2002) Gelation behavior of native and acetylated konjac glucomannan. Biomacromolecules 3: pp. 1296-1303 CrossRef
    35. Luo, XG, He, P, Lin, XY (2013) The mechanism of sodium hydroxide solution promoting the gelation of konjac glucomannan (KGM). Food Hydrocolloids 30: pp. 92-99 CrossRef
    36. Huang, T, Meng, F, Qi, LM (2009) Facile synthesis and one-dimensional assembly of cyclodextrin-capped gold nanoparticles and their applications in catalysis and surface-enhanced Raman scattering. J Phys Chem C 113: pp. 13636-13642 CrossRef
    37. Saha, S, Pal, A, Kundu, S, Basu, S, Pal, T (2010) Photochemical green synthesis of calcium-alginate-stabilized Ag and Au nanoparticles and their catalytic application to 4-nitrophenol reduction. Langmuir 26: pp. 2885-2893 CrossRef
    38. Dauthal, P, Mukhopadhyay, M (2012) Prunus domestica fruit extract-mediated synthesis of gold nanoparticles and its catalytic activity for 4-nitrophenol reduction. Ind Eng Chem Res 51: pp. 13014-13020 CrossRef
    39. Das, SK, Dickinson, C, Lafir, F, Brougham, DF, Marsili, E (2012) Synthesis, characterization and catalytic activity of gold nanoparticles biosynthesized with Rhizopus oryzae protein extract. Green Chemistry 14: pp. 1322-1334 CrossRef
  • 刊物主题:Nanotechnology; Nanotechnology and Microengineering; Nanoscale Science and Technology; Nanochemistry; Molecular Medicine;
  • 出版者:Springer US
  • ISSN:1556-276X
文摘
A facile one-pot approach for synthesis of gold nanoparticles with narrow size distribution and good stability was presented by reducing chloroauric acid with a polysaccharide, konjac glucomannan (KGM) in alkaline solution, which is green and economically viable. Here, KGM served both as reducing agent and stabilizer. The effects of KGM on the formation and stabilization of as-synthesized gold nanoparticles were studied systematically by a combination of UV-visible (UV-vis) absorption spectroscopy, transmission electron microscopy, X-ray diffraction, dynamic light scattering, and Fourier transform infrared spectroscopy. Furthermore, the gold nanoparticles exhibited a notable catalytic activity toward the reduction of 4-nitrophenol to 4-aminophenol.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700