用户名: 密码: 验证码:
Polydopamine-assisted fabrication of fiber-optic localized surface plasmon resonance sensor based on gold nanoparticles
详细信息    查看全文
  • 作者:Rongxin Su 苏荣檿/a> ; Zheyuan Pei 裴哲轿/a> ; Renliang Huang 黄仁丿/a>…
  • 关键词:localized surface plasmon resonance ; sensor ; gold nanoparticles ; polydopamine ; optimization
  • 刊名:Transactions of Tianjin University
  • 出版年:2015
  • 出版时间:October 2015
  • 年:2015
  • 卷:21
  • 期:5
  • 页码:412-419
  • 全文大小:823 KB
  • 参考文献:[1]Homola J, Yee S S, Gauglitz G. Surface plasmon resonance sensors: Review[J]. Sensors and Actuators B: Chemical, 1999, 54(1): 3–15.CrossRef
    [2]Willets K A, Van Duyne R P. Localized surface plasmon resonance spectroscopy and sensing[J]. Annual Review of Physical Chemistry, 2007, 58: 267–297.CrossRef
    [3]Mayer K M, Hafner J H. Localized surface plasmon resonance sensors[J]. Chemical Reviews, 2011, 111(6): 3828–3857.CrossRef
    [4]Chung T, Lee S Y, Song E Y et al. Plasmonic nanostructures for nano-scale bio-sensing[J]. Sensors, 2011, 11(11): 10907–10929.CrossRef
    [5]Cao J, Sun T, Grattan K T. Gold nanorod-based localized surface plasmon resonance biosensors: A review[J]. Sensors and Actuators B: Chemical, 2014, 195: 332–351.CrossRef
    [6]Anker J N, Hall W P, Lyandres O et al. Biosensing with plasmonic nanosensors[J]. Nature Materials, 2008, 7(6): 442–453.CrossRef
    [7]Hutter E, Fendler J H. Exploitation of localized surface plasmon resonance[J]. Advanced Materials, 2004, 16(19): 1685–1706.CrossRef
    [8]Raphael M P, Christodoulides J A, Delehanty J B et al. Quantitative LSPR imaging for biosensing with single nanostructure resolution[J]. Biophysical Journal, 2013, 104(1): 30–36.CrossRef
    [9]Blaber M G, Henry A I, Bingham J M et al. LSPR imaging of silver triangular nanoprisms: correlating scattering with structure using electrodynamics for plasmon lifetime analysis[J]. The Journal of Physical Chemistry C, 2011, 116(1): 393–403.CrossRef
    [10]Zhou W, Ma Y, Yang H et al. A label-free biosensor based on silver nanoparticles array for clinical detection of serum p53 in head and neck squamous cell carcinoma[J]. International Journal of Nanomedicine, 2011, 6(1): 381–386.CrossRef
    [11]Jin S, Ma X, Ma H et al. Surface chemistry-mediated penetration and gold nanorod thermotherapy in multicellular tumor spheroids[J]. Nanoscale, 2012, 5(1): 143–146.CrossRef
    [12]Hall W P, Ngatia S N, Van Duyne R P. LSPR biosensor signal enhancement using nanoparticle: Antibody conjugates[J]. The Journal of Physical Chemistry C, 2011, 115(5): 1410–1414.CrossRef
    [13]Guo L, Kim D H. LSPR biomolecular assay with high sensitivity induced by aptamer-antigen-antibody sandwich complex[J]. Biosensors and Bioelectronics, 2012, 31(1): 567–570.CrossRef
    [14]Schneider T, Jahr N, Jatschka J et al. Localized surface plasmon resonance(LSPR)study of DNA hybridization at single nanoparticle transducers[J]. Journal of Nanoparticle Research, 2013, 15(4): 1–10.CrossRef
    [15]Soares L, Csáki A, Jatschka J et al. Localized surface plasmon resonance (LSPR) biosensing using gold nanotriangles: Detection of DNA hybridization events at room temperature[J]. Analyst, 2014, 139(19): 4964–4973.CrossRef
    [16]Cao J, Galbraith E K, Sun T et al. Effective surface modification of gold nanorods for localized surface plasmon resonance-based biosensors[J]. Sensors and Actuators B: Chemical, 2012, 169: 360–367.CrossRef
    [17]Liao X, Chen Y, Qin M et al. Au-Ag-Au double shell nanoparticles-based localized surface plasmon resonance and surface-enhanced Raman scattering biosensor for sensitive detection of 2-mercapto-1-methylimidazole[J]. Talanta, 2013, 117: 203–208.CrossRef
    [18]Tang L, Casas J. Quantification of cardiac biomarkers using label-free and multiplexed gold nanorod bioprobes for myocardial infarction diagnosis[J]. Biosensors and Bioelectronics, 2014, 61: 70–75.CrossRef
    [19]Park J H, Byun J Y, Mun H et al. A regeneratable, labelfree, localized surface plasmon resonance (LSPR) aptasensor for the detection of ochratoxin A[J]. Biosensors and Bioelectronics, 2014, 59: 321–327.CrossRef
    [20]Acimovic S S, Ortega M A, Sanz V et al. LSPR chip for parallel, rapid, and sensitive detection of cancer markers in serum[J]. Nano Letters, 2014, 14(5): 2636–2641.CrossRef
    [21]Xie L, Yan X, Du Y. An aptamer based wall-less LSPR array chip for label-free and high throughput detection of biomolecules[J]. Biosensors and Bioelectronics, 2014, 53: 58–64.CrossRef
    [22]Liu X, Yang J, Zhang L et al. Self-assembled monolayer of lipoic acid on gold and its application to rapid determination of 2,3,7,8-tetrachlorodibenzo-p-dioxin[J]. Transactions of Tianjin University, 2013, 19(4): 248–254.CrossRef
    [23]Jeong H H, Erdene N, Park J H et al. Real-time label-free immunoassay of interferon-gamma and prostate-specific antigen using a fiber-optic localized surface plasmon resonance sensor[J]. Biosensors and Bioelectronics, 2013, 39(1): 346–351.CrossRef
    [24]Camara A R, Gouvêa P M, Dias A C et al. Dengue immunoassay with an LSPR fiber optic sensor[J]. Optics Express, 2013, 21(22): 27023–27031.CrossRef
    [25]Sanders M, Lin Y, Wei J et al. An enhanced LSPR fiberoptic nanoprobe for ultrasensitive detection of protein biomarkers[J]. Biosensors and Bioelectronics, 2014, 61: 95–101.CrossRef
    [26]Jorgenson R, Yee S. A fiber-optic chemical sensor based on surface plasmon resonance[J]. Sensors and Actuators B: Chemical, 1993, 12(3):213–220.CrossRef
    [27]Bharadwaj R, Mukherji S. Gold nanoparticle coated Ubend fibre optic probe for localized surface plasmon resonance based detection of explosive vapours[J]. Sensors and Actuators B: Chemical, 2014, 192: 804–811.CrossRef
    [28]Satija J, Punjabi N S, Sai V et al. Optimal design for Ubent fiber-optic LSPR sensor probes[J]. Plasmonics, 2014, 9(2): 251–260.CrossRef
    [29]He Y J. Novel D-shape LSPR fiber sensor based on nanometal strips[J]. Optics Express, 2013, 21(20): 23498–23510.CrossRef
    [30]Lin H Y, Huang C H, Cheng G L et al. Tapered optical fiber sensor based on localized surface plasmon resonance[J]. Optics Express, 2012, 20(19): 21693–21701.CrossRef
    [31]Ji X, Song X, Li J et al. Size control of gold nanocrystals in citrate reduction: the third role of citrate[J]. Journal of the American Chemical Society, 2007, 129(45): 13939–13948.CrossRef
    [32]Lin T J, Lou C T. Reflection-based localized surface plasmon resonance fiber-optic probe for chemical and biochemical sensing at high-pressure conditions[J]. The Journal of Supercritical Fluids, 2007, 41(2): 317–325.CrossRef
    [33]Tang J L, Cheng S F, Hsu W T et al. Fiber-optic biochemical sensing with a colloidal gold-modified long period fiber grating[J]. Sensors and Actuators B: Chemical, 2006, 119(1): 105–109.CrossRef
    [34]Mitsui K, Handa Y, Kajikawa K. Optical fiber affinity biosensor based on localized surface plasmon resonance[J]. Applied Physics Letters, 2004, 85(18): 4231–4233.CrossRef
    [35]Chau L K, Lin Y F, Cheng S F et al. Fiber-optic chemical and biochemical probes based on localized surface plasmon resonance[J]. Sensors and Actuators B: Chemical, 2006, 113(1): 100–105.CrossRef
    [36]Cheng S F, Chau L K. Colloidal gold-modified optical fiber for chemical and biochemical sensing[J]. Analytical Chemistry, 2003, 75(1): 16–21.CrossRef
    [37]Xi Z Y, Xu Y Y, Zhu L P et al. A facile method of surface modification for hydrophobic polymer membranes based on the adhesive behavior of poly(DOPA)and poly(dopamine)[J]. Journal of Membrane Science, 2009, 327(1): 244–253.CrossRef
    [38]Lee H, Dellatore S M, Miller W M et al. Mussel-inspired surface chemistry for multifunctional coatings[J]. Science, 2007, 318(5849): 426–430.CrossRef
    [39]Liu Y, Ai K, Lu L. Polydopamine and its derivative materials: synthesis and promising applications in energy, environmental, and biomedical fields[J]. Chemical Reviews, 2014, 114(9): 5057–5115.CrossRef
    [40]Cao J, Galbraith E K, Sun T et al. Cross-comparison of surface plasmon resonance-based optical fiber sensors with different coating structures[J]. Sensors Journal, IEEE, 2012, 12(7): 2355–2361.CrossRef
    [41]Cao J, Tu M H, Sun T et al. Wavelength-based localized surface plasmon resonance optical fiber biosensor[J]. Sensors and Actuators B: Chemical, 2013, 181: 611–619.CrossRef
    [42]Tu M, Sun T, Grattan K. Optimization of goldnanoparticle-based optical fibre surface plasmon resonance(SPR)-based sensors[J]. Sensors and Actuators B: Chemical, 2012, 164(1): 43–53.CrossRef
  • 作者单位:Rongxin Su 苏荣欣 (1) (2)
    Zheyuan Pei 裴哲远 (1)
    Renliang Huang 黄仁亮 (3)
    Wei Qi 齐 崴 (1) (2)
    Mengfan Wang 王梦凡 (1)
    Libing Wang 王利兵 (1) (4)
    Zhimin He 何志敏 (1)

    1. State Key Laboratory of Chemical Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, China
    2. Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin, 300072, China
    3. School of Environmental Science and Engineering, Tianjin University, Tianjin, 300072, China
    4. Hunan Entry-Exit Inspection and Quarantine Bureau, Changsha, 410001, China
  • 刊物类别:Engineering
  • 刊物主题:Chinese Library of Science
  • 出版者:Tianjin University
  • ISSN:1995-8196
文摘
A fast and facile method of fabricating fiber-optic localized surface plasmon resonance sensors based on spherical gold nanoparticles was introduced in this study. The gold nanoparticles with an average diameter of 55 nm were synthesized via the Turkevich method and were then immobilized onto the surface of an uncladded sensor probe using a polydopamine layer. To obtain a sensor probe with high sensitivity to changes in the refractive index, a set of key optimization parameters, including the sensing length, coating time of the polydopamine layer, and coating time of the gold nanoparticles, were investigated. The sensitivity of the optimized sensor probe was 522.80 nm per refractive index unit, and the probe showed distinctive wavelength shifts when the refractive index was changed from 1.328 6 to 1.398,7. When stored in deionized water at 4 °C, the sensor probe proved to be stable over a period of two weeks. The sensor also exhibited advantages, such as low cost, fast fabrication, and simple optical setup, which indicated its potential application in remote sensing and real-time detection.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700