用户名: 密码: 验证码:
Green algal over cyanobacterial dominance promoted with nitrogen and phosphorus additions in a mesocosm study at Lake Taihu, China
详细信息    查看全文
  • 作者:Jianrong Ma (1) (2)
    Boqiang Qin (2)
    Hans W. Paerl (3)
    Justin D. Brookes (4)
    Pan Wu (2)
    Jian Zhou (2)
    Jianming Deng (2)
    Jinsong Guo (1)
    Zhe Li (1)

    1. Key Laboratory of Reservoir Aquatic Environment
    ; Chongqing Institute of Green and Intelligent Technology ; Chinese Academy of Sciences ; Chongqing ; 400714 ; People鈥檚 Republic of China
    2. State Key Laboratory of Lake Science and Environment
    ; Nanjing Institute of Geography and Limnology ; Chinese Academy of Sciences ; Nanjing ; 210008 ; People鈥檚 Republic of China
    3. Institute of Marine Sciences
    ; The University of North Carolina at Chapel Hill ; Morehead City ; NC ; 28557 ; USA
    4. School of Earth and Environmental Science
    ; University of Adelaide ; 5005 ; Adelaide ; Australia
  • 关键词:Eutrophication ; Cyanobacteria ; Green algae ; Nitrogen ; Phosphorus ; Dominance
  • 刊名:Environmental Science and Pollution Research
  • 出版年:2015
  • 出版时间:April 2015
  • 年:2015
  • 卷:22
  • 期:7
  • 页码:5041-5049
  • 全文大小:963 KB
  • 参考文献:1. Agusti, S, Duarte, CM, Canfield, DE (1990) Phytoplankton abundance in Florida lakes: evidence for the frequent lack of nutrient limitation. Limnol Oceanogr 35: pp. 181-188 CrossRef
    2. Bergquist, A, Carpenter, S (1986) Limnetic herbivory: effects on phytoplankton populations and primary production. Ecology 67: pp. 1351-1360 CrossRef
    3. Brookes, JD, Carey, CC (2011) Resilience to blooms. Science 334: pp. 46-47 CrossRef
    4. Brown, JH, Gillooly, JF, Allen, AP, Savage, VM, West, GB (2004) Toward a metabolic theory of ecology. Ecology 85: pp. 1771-1789 CrossRef
    5. Canfield, DE, Glazer, AN, Falkowski, PG (2010) The evolution and future of Earth鈥檚 nitrogen cycle. Science 330: pp. 192-196 CrossRef
    6. Chen, Y, Qin, B, Teubner, K, Dokulil, MT (2003) Long-term dynamics of phytoplankton assemblages: microcystis-domination in Lake Taihu, a large shallow lake in China. J Plankton Res 25: pp. 445-453 CrossRef
    7. Chen, B, Xu, Z, Zhou, Q, Chen, C, Gao, Y, Yang, S, Ji, W (2010) Long-term changes of phytoplankton community in Xiagu waters of Xiamen, China. Acta Oceanol Sin 29: pp. 104-114 CrossRef
    8. Chisholm SW (1992) Phytoplankton size. Primary productivity and biogeochemical cycles in the sea. Plenum, 213鈥?37
    9. Conley, JD, Paerl, HW, Howarth, RW, Boesch, DF, Seitzinger, SP, Havens, KE, Lancelot, C, Likens, GE (2009) Controlling eutrophication: nitrogen and phosphorus. Science 323: pp. 1014-1015 CrossRef
    10. Cyr, H, Curtis, JM (1999) Zooplankton community size structure and taxonomic composition affects size-selective grazing in natural communities. Oecologia 118: pp. 306-315 CrossRef
    11. Downing, JA, Watson, SB, McCauley, E (2001) Predicting cyanobacteria dominance in lakes. Can J Fish Aquat Sci 58: pp. 1905-1908 CrossRef
    12. Edwards, KF, Klausmeier, CA, Litchman, E (2011) Evidence for a three-way trade-off between nitrogen and phosphorus competitive abilities and cell size in phytoplankton. Ecology 92: pp. 2085-2095 CrossRef
    13. Elser, JJ, Bracken, ME, Cleland, EE, Gruner, DS, Harpole, WS, Hillebrand, H, Ngai, JT, Seabloom, EW, Shurin, JB, Smith, JE (2007) Global analysis of nitrogen and phosphorus limitation of primary producers in freshwater, marine and terrestrial ecosystems. Ecol Lett 10: pp. 1135-1142 CrossRef
    14. Fenchel, T (1974) Intrinsic rate of natural increase: the relationship with body size. Oecologia 14: pp. 317-326 CrossRef
    15. Hu, HJ, Li, Y, Wei, H, Zhu, J (1980) Freshwater algae in China. Shanghai Science and Technology Press, Beijing
    16. Jensen, J, Jeppesen, E, Olrik, K, Kristensen, P (1994) Impact of nutrients and physical factors on the shift from cyanobacterial to chlorophyte dominance in shallow Danish lakes. Can J Fish Aquat Sci 51: pp. 1692-1699 CrossRef
    17. Kearns, KD, Hunter, MD (2001) Green algal extracellular products regulate antialgal toxin production in a cyanobacterium. Environ Microbiol 2: pp. 291-297 CrossRef
    18. Ki酶rboe, T (1993) Turbulence, phytoplankton cell size, and the structure of pelagic food webs. Adv Mar Biol 29: pp. 1-72 CrossRef
    19. Knoechel, R, Kalff, J (1975) Algal sedimentation: the cause of a diatom-blue-green succession. Verhandlungen Internationale Vereinigung Limnologie 19: pp. 745-754
    20. Li, M, Zhu, W, Gao, L, Lu, L (2013) Changes in extracellular polysaccharide content and morphology of Microcystis aeruginosa at different specific growth rates. J Appl Phycol 25: pp. 1023-1230 CrossRef
    21. Litchman, E, Klausmeier, CA, Schofield, OM, Falkowski, PG (2007) The role of functional traits and trade-offs in structuring phytoplankton communities: scaling from cellular to ecosystem level. Ecol Lett 10: pp. 1170-1181 CrossRef
    22. Ma, J, Brookes, JD, Qin, B, Paerl, HW, Gao, G, Wu, P (2014) Environmental factors controlling colony formation in blooms of the cyanobacteria Microcystis spp. in Lake Taihu, China. Harmful Algae 31: pp. 136-142 CrossRef
    23. Mara帽贸n, E, Cerme帽o, P, L贸pez-Sandoval, DC, Rodr铆guez-Ramos, T, Sobrino, C, Huete-Ortega, M, Blanco, JM, Rodr铆guez, J (2013) Unimodal size scaling of phytoplankton growth and the size dependence of nutrient uptake and use. Ecol Lett 16: pp. 371-379 CrossRef
    24. Morita, RY (1975) Psychrophilic bacteria. Bacteriol Rev 39: pp. 144-167
    25. Munoz, R, Guieysse, B (2006) Algal鈥揵acterial processes for the treatment of hazardous contaminants: a review. Water Res 40: pp. 2799-2815 CrossRef
    26. Oliver RL, Hamilton DP, Brookes JD, Ganf GG (2012) Physiology, blooms and prediction of planktonic cyanobacteria, Ecology of Cyanobacteria II. Springer, pp. 155鈥?94
    27. Paerl, HW, Hall, NS, Calandrino, ES (2011) Controlling harmful cyanobacterial blooms in a world experiencing anthropogenic and climatic-induced change. Sci Total Environ 409: pp. 1739-1745 CrossRef
    28. Paerl, HW, Xu, H, McCarthy, MJ, Zhu, G, Qin, B, Li, Y, Gardner, WS (2011) Controlling harmful cyanobacterial blooms in a hyper-eutrophic lake (Lake Taihu, China): the need for a dual nutrient (N & P) management strategy. Water Res 45: pp. 1973-1983 CrossRef
    29. Paerl HW, Xu H, Hall NS, Zhu G, Qin B, Wu Y, Rossignol KL, Dong L, McCarthy MJ, and Joyner AR (2014) Controlling cyanobacterial blooms in hypertrophic Lake Taihu, China: will nitrogen reductions cause replacement of non-N2 fixing by N2 fixing taxa? PLoSOne (In Press)
    30. P谩pista, 脡, Acs, E, B枚ddi, B (2002) Chlorophyll-a determination with ethanol鈥攁 critical test. Hydrobiologia 485: pp. 191-198 CrossRef
    31. Pick, FR, Lean, DR (1987) The role of macronutrients (C, N, P) in controlling cyanobacterial dominance in temperate lakes. N Z J Mar Freshw Res 21: pp. 425-434 CrossRef
    32. Reynolds, C (1988) Functional morphology and the adaptive strategies of freshwater phytoplankton. Growth and reproductive strategies of freshwater phytoplankton. Cambridge University Press, Cambridge
    33. Reynolds CS (2006) The ecology of phytoplankton. Cambridge University Press
    34. Reynolds, CS, Oliver, RL, Walsby, AE (1987) Cyanobacterial dominance: the role of buoyancy regulation in dynamic lake environments. N Z J Mar Freshw Res 21: pp. 379-390 CrossRef
    35. Scheffer, M, Rinaldi, S, Gragnani, A, Mur, LR, Nes, EH (1997) On the dominance of filamentous cyanobacteria in shallow, turbid lakes. Ecology 78: pp. 272-282 CrossRef
    36. Smith, VH (1986) Light and nutrient effects on the relative biomass of blue-green algae in Lake Phytoplankton. Can J Fish Aquat Sci 43: pp. 148-153 CrossRef
    37. Steinberg, C, Hartmann, H (1988) Planktonic bloom-forming Cyanobacteria and the eutrophication of lakes and rivers. Freshw Biol 20: pp. 279-287 CrossRef
    38. Tilman, D (1976) Ecological competition between algae: experimental confirmation of resource-based competition theory. Science 192: pp. 463-465 CrossRef
    39. Trimbee, AM, Prepas, E (1987) Evaluation of total phosphorus as a predictor of the relative biomass of blue-green algae with emphasis on Alberta lakes. Can J Fish Aquat Sci 44: pp. 1337-1342 CrossRef
    40. Watson, S, McCauley, E, Downing, JA (1992) Sigmoid relationships between phosphorus, algal biomass, and algal community structure. Can J Fish Aquat Sci 49: pp. 2605-2610 CrossRef
    41. Wilson, AE, Kaul, RB, Sarnelle, O (2010) Growth rate consequences of coloniality in a harmful phytoplankter. PLoS One 5: pp. 1-8
    42. Wu, X, Kong, F (2009) Effects of light and wind speed on the vertical distribution of Microcystis aeruginosa colonies of different sizes during a summer bloom. Int Rev Hydrobiol 94: pp. 258-266 CrossRef
    43. Xu, H, Paerl, HW, Qin, B, Zhu, G, Gao, G (2010) Nitrogen and phosphorus inputs control phytoplankton growth in eutrophic Lake Taihu, China. Limnol Oceanogr 55: pp. 420-432 CrossRef
    44. Yamamoto Y, Shiah F-K, Chen Y-L, (2011) Importance of large colony formation in bloom-forming cyanobacteria to dominate in eutrophic ponds, Annales de Limnologie-International Journal of Limnology. Cambridge Univ Press, pp. 167鈥?73
  • 刊物类别:Earth and Environmental Science
  • 刊物主题:Environment
    Environment
    Atmospheric Protection, Air Quality Control and Air Pollution
    Waste Water Technology, Water Pollution Control, Water Management and Aquatic Pollution
    Industrial Pollution Prevention
  • 出版者:Springer Berlin / Heidelberg
  • ISSN:1614-7499
文摘
Enrichment of waterways with nitrogen (N) and phosphorus (P) has accelerated eutrophication and promoted cyanobacterial blooms worldwide. An understanding of whether cyanobacteria maintain their dominance under accelerated eutrophication will help predict trends and provide rational control measures. A mesocosm experiment was conducted under natural light and temperature conditions in Lake Taihu, China. It revealed that only N added to lake water promoted growth of colonial and filamentous cyanobacteria (Microcystis, Pseudoanabaena and Planktothrix) and single-cell green algae (Cosmarium, Chlorella, and Scenedesmus). Adding P alone promoted neither cyanobacteria nor green algae significantly. N plus P additions promoted cyanobacteria and green algae growth greatly. The higher growth rates of green algae vs. cyanobacteria in N plus P additions resulted in the biomass of green algae exceeding that of cyanobacteria. This indicates that further enrichment with N plus P in eutrophic water will enhance green algae over cyanobacterial dominance. However, it does not mean that eutrophication problems will cease. On the contrary, the risk will increase due to increasing total phytoplankton biomass.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700