用户名: 密码: 验证码:
Nanomaterial Applications in Multiple Sclerosis Inflamed Brain
详细信息    查看全文
  • 作者:Clara Ballerini (1)
    Giovanni Baldi (2)
    Alessandra Aldinucci (1)
    Pietro Maggi (3) (4)

    1. Department of Neurofarba
    ; University of Florence ; Viale Pieraccini ; 6 ; 50137 ; Florence ; Italy
    2. Ce.Ri.Col -Research Center Colorobbia
    ; Montelupo Fiorentino ; Florence ; Italy
    3. H么pital Erasme -Universit茅 libre de Bruxelles -Bruxelles-Be
    ; Brussels ; Belgium
    4. National Institute of Neurological Disorders and Stroke -NIH-Bethesda-US
    ; Bethesda ; MD ; USA
  • 关键词:Nanotechnology ; Nanomaterials ; Imaging ; Therapy ; Brain inflammation ; Multiple sclerosis
  • 刊名:Journal of Neuroimmune Pharmacology
  • 出版年:2015
  • 出版时间:March 2015
  • 年:2015
  • 卷:10
  • 期:1
  • 页码:1-13
  • 全文大小:835 KB
  • 参考文献:1. Abbott NJ, Patabendige AA, Dolman DE et al (2010) Structure and function of the blood brain barrier. Neurobiol Dis 37:13鈥?5 CrossRef
    2. Absinta M, Sati P, Gaitan MI et al (2013) Seven-tesla phase imaging of acute multiple sclerosis lesions: a new window into the inflammatory process. Ann Neurol 74(5):669鈥?78 CrossRef
    3. Adams RD, Kubik CS (1952) The morbid anatomy of demyelinative disease. Am J Med 12(5):510鈥?46 43(52)90234-9" target="_blank" title="It opens in new window">CrossRef
    4. Akhtari M, Bragin A, Moats R et al (2012) Imaging brain neuronal activity using functionalized magneto particles and MRI. Brain Topogr 25(4):374鈥?88 48-012-0231-4" target="_blank" title="It opens in new window">CrossRef
    5. Aldinucci A, Turco A, Biagioli T et al (2013) Carbon nanotube scaffolds instruct human dendritic cells: modulating immune responses by contacts at the nanoscale. Nano Lett 13(12):6098鈥?105 403396e" target="_blank" title="It opens in new window">CrossRef
    6. Anderson SA, Shukaliak-Quandt J, Jordn EK et al (2004) Magnetic resonance imaging of labeled T-cells in a mouse model of mutliple sclerosis. Ann Neurol 55(5):654鈥?59 CrossRef
    7. Avnir Y, Turjeman K, Tulchinsky D et al (2011) Fabrication principles and their contribution to the superior in vivo therapeutic efficacy of nano-liposomes remote loaded with glucocorticoids. PLoS One 6(10):e25721 CrossRef
    8. Baeten K, Hendriks JJ, Hellings N et al (2008) Visualization of the kinetics of macrophage infiltration during experimental autoimmune encephalomyelitis by magnetic resonance imaging. J Neuroimmunol 195(1鈥?):1鈥? CrossRef
    9. Baeten K, Adriaensens P, Hendriks J et al (2010) Tracking of myelin reactive RT cells in EAE animals using small particles of iron oxide and MRI. NMR Biomed 23(6):601鈥?19 CrossRef
    10. Bardi G, Nunes A, Gherardini L et al (2013) Functionalized carbon nanotubes in the brain: cellular internalization and neuroinflammatory response. PLoS One 8(11):e80964 4" target="_blank" title="It opens in new window">CrossRef
    11. Barkhof F, Simon JH, Fazekas F et al (2011) MRI monitoring of immunomodulation in relapse-onset multiple sclerosis trials. Nat Rev Neurol 8(1):13鈥?1 CrossRef
    12. Baxter AG (2007) The origin and application of experimental autoimmune encephalomyelitis. Nat Rev Immunol 7(11):904鈥?12 CrossRef
    13. Bondi ML, Craparo EF, Giammona G et al (2010) Brain-targeted solid lipid nanoparticles containing riluzole: preparation, characterization and biodistribution. Nanomedicine 5:25鈥?2 CrossRef
    14. B眉y眉ktimkin B, Wang Q, Kiptoo P et al (2012) Vaccine-like controlled-release delivery of an immunomodulating peptide to treat experimental autoimmune encephalomyelitis. Mol Pharm 9:979鈥?85 4q" target="_blank" title="It opens in new window">CrossRef
    15. Cappellano G, Woldetsadik AD, Orilieri E (2014) Subcutaneous inverse vaccination with PLGA particles loaded with a MOG peptide and IL-10 decreases the severity of experimental autoimmune encephalomyelitis. Vaccine 32:5681鈥?689 4.08.016" target="_blank" title="It opens in new window">CrossRef
    16. Carson MJ, Doose JM, Melchior B et al (2006) CNS immune privilege: hiding in plain sight. Immunol Rev 213:48鈥?5 441.x" target="_blank" title="It opens in new window">CrossRef
    17. Cavaletti G, Cassetti A, Canta A (2009) Cationic liposomes target sites of acute neuroinflammation in experimental autoimmune encephalomyelitis. Mol Pharm 6(4):1050鈥?058
    18. Cellot G, Cilia E, Cipollone S et al (2009) Carbon nanotubes might improve neuronal performance by favoring electrical shortcuts. Nat Nanotechnol 4:126鈥?33 4" target="_blank" title="It opens in new window">CrossRef
    19. Cha S, Knopp EA, Johnson G, et al (2002) Intracranial mass lesions: dynamic contrast-enhanced susceptibility-weighted echo-planar perfusion MR imaging. Radiol 223(1):11鈥?9
    20. Corot C, Petry KG, Trivedi R et al (2004) Macrophage imaging in central nervous system and in carotid atherosclerotic plaque using ultrasmall superparamagnetic iron oxide in magnetic resonance imaging. Investig Radiol 39(10):619鈥?25
    21. Dai H, Navath RS, Balakrishnan B et al (2010) Intrinsic targeting of inflammatory cells in the brain by polyamidoamine dendrimers upon subaracnoid administration. Nanomedicine 5(9):1317鈥?329 CrossRef
    22. de Chickera S, Willert C, Mallet C et al (2012) Cellular MRI as suitable, sensitive non-invasive modality for correlating in vivo migratory efficiencies of different dendritic cell populations with subsequent biological outcomes. Int Immunol 24(1):29鈥?1 CrossRef
    23. Floris S, Blezer EL, Schreibelt G et al (2004) Blood鈥揵rain barrier permeability and monocyte infiltration in experimental allergic encephalomyelitis: a quantitative MRI study. Brain 127(3):616鈥?27 brain/awh068" target="_blank" title="It opens in new window">CrossRef
    24. Fon D, Zhou K, Ercole F et al (2014) Nanofibrous scaffolds releasing a small molecule BDNF-mimetic for the re-direction of endogenous neuroblast migration in the brain. Biomaterials 35:2692鈥?712 CrossRef
    25. Gaitan MI, Shea CD, Evangelou IE et al (2011) Evolution of the blood鈥揵rain barrier in newly forming multiple sclerosis lesions. Ann Neurol 70(1):22鈥?9 472" target="_blank" title="It opens in new window">CrossRef
    26. Gaitan MI, Sati P, Inati SJ et al (2013) Initial investigation of the blood鈥揵rain barrier in MS lesions at 7 tesla. Mult Scler 19(8):1068鈥?073 458512471093" target="_blank" title="It opens in new window">CrossRef
    27. Garden OA, Reynolds PR, Yates J et al (2006) A rapid method for labelling CD4 + T cells with ultrasmall paramagnetic iron oxide nanoparticles for magnetic resonance imaging that preserves proliferative, regulatory, and migratory behavior in vitro. J Immunol Methods 314(1鈥?):123鈥?33 CrossRef
    28. Ge Y, Law M, Johnson G et al (2005) Dynamic susceptibility contrast perfusion MR imaging of multiple sclerosis lesions: characterizing hemodynamic impairment and inflammatory activity. Am J Neuroradiol 26(6):1539鈥?547
    29. Getts DR, Turley DM, Smith CE et al (2011) Tolerance induced by apoptotic antigen-coupled leukocytes is induced by PD-L1+ and IL-10 producing splenic macrophages and maintained by T regulatory cells. J Immunol 187:2405鈥?417 4049/jimmunol.1004175" target="_blank" title="It opens in new window">CrossRef
    30. Getts DR, Martin AJ, McCarthy DP et al (2012) Microparticles bearing encephalytogenic peptides induce T-cell tolerance and ameliorate experimental autoimmune encephalomyelitis. Nat Biotechnol 30(12):1217鈥?224 434" target="_blank" title="It opens in new window">CrossRef
    31. Getts DR, Terry RL, Getts MT et al (2014) Therapeutic inflammatory monocyte modulation using immune-modifying microparticles. Sci Transl Med 6:219ra7 CrossRef
    32. Gilmore JL, Yi X, Quan L et al (2008) Novel nanomaterials for clinical neuroscience. J NeuroImmune Pharm 3:83鈥?4 481-007-9099-6" target="_blank" title="It opens in new window">CrossRef
    33. Godinho BM, McCarthy DJ, Torres-Fuentes C et al (2014) Differential nanotoxicological and neuroinflammatory liabilities of non-viral vectors for RNA interference in the central nervous system. Biomaterials 35:489鈥?99 CrossRef
    34. Gomes MJ, Neves JD, Sarmento B (2014) Nanoparticle-based drug delivery to improve the efficacy of antiretroviral therapy in the central nervous system. Int J Nanomedicine 9:1757鈥?769
    35. Hanisch UK, Kettenmann H (2007) Microglia. active sensor and versatile effector cells in the normal and pathologic brain. Nat Neurosci 10(11):1387鈥?394 CrossRef
    36. Hauser SL, Chan JR, Oksenberg JR (2013) Multiple Sclerosis: prospects and promise. Ann Neurol 74:317鈥?27
    37. Heckman KL, DeCoteau W, Estevez A et al (2013) Custom cerium oxide nanoparticles protect against a free radical mediated autoimmune degenerative disease in the brain. ACS Nano 7(12):10582鈥?0596 403743b" target="_blank" title="It opens in new window">CrossRef
    38. Heneka MT, Kummer MP, Latz E (2014) Innate immune activation in neurodegenerative disease. Nat Rev Immunol 14(7):463鈥?77 CrossRef
    39. Herz J, Paterka M, Niesner RA et al (2011) In vivo imaging of lymphocytes in the CNS reveals different behavior of naive T cells in health and disease. J Neuroinflammation 8:131 42-2094-8-131" target="_blank" title="It opens in new window">CrossRef
    40. Hofmann-Amtenbrink M, Hofmann H, Hool A et al (2014) Nanotechnology in medicine: European research and its implications. Swiss Med Wkly 144:w14044
    41. Huang JY, Lu YM, Wang H et al (2013) The effect of lipid nanoparticle PEGylation on neuroinflammatory response in mouse brain. Biomaterials 34:7960鈥?970 CrossRef
    42. Hunter Z, McCarthy DP, Yap WT et al (2014) A biodegradable nanoparticle platform for the induction of antigen-specific immune tolerance for treatment of autoimmune disease. ACS Nano 8(3):2148鈥?160 405033r" target="_blank" title="It opens in new window">CrossRef
    43. Jin S, Li S, Wang C et al (2014) Biosafe nanoscale pharmaceutical adjuvant materials. J Biomed Nanotechnol 10(9):2393鈥?419 4.1898" target="_blank" title="It opens in new window">CrossRef
    44. Kanwar JR, Sun X, Punj V et al (2012) Nanoparticles in the treatment and diagnosis of neurological disorders: untamed dragon with fire power to heal. Nanomedicine: nanotechnology. Biol Med 8:399鈥?14
    45. Kap YS, Laman JD, 鈥榯 Hart BA (2011) Effects of early IL17A neutralization on disease induction in a primate model of experimental autoimmune encephalomyelitis. J NeuroImmune Pharm 5(2):220鈥?30 481-009-9178-y" target="_blank" title="It opens in new window">CrossRef
    46. Katz D, Taubenberger JK, Cannella B et al (1993) Correlation between magnetic resonance imaging findings and lesion development in chronic, active multiple sclerosis. Ann Neurol 34(5):661鈥?69 410340507" target="_blank" title="It opens in new window">CrossRef
    47. Kizelsztein P, Ovadia H, Garbuzenko O et al (2009) Pegylated nanoliposomes remote-loaded with the antioxidant tempamine ameliorate experimental autoimmune encephalomyelitis. J NeuroImmune 213:20鈥?5 CrossRef
    48. Klyachko NL, Haney MJ, Zhao Y (2013) Macrophages offer a paradigm switch for CNS delivery of therapeutic proteins. Nanomedicine 9(9):1403鈥?422 CrossRef
    49. Lassmann H, van Horssen J, Mahad D (2012) Progressive multiple sclerosis. Nat Rev Neurol 8:647鈥?56 CrossRef
    50. Lemos H, Huang L, Chandler PR et al (2014) Activating of the STING adaptor attenuates experimental autoimmune encephalomyelitis. J Immunol 192:5571鈥?578 4049/jimmunol.1303258" target="_blank" title="It opens in new window">CrossRef
    51. Luchetti A, Milani D, Ruffini F et al (2011) Monoclonal antibodies conjugated with superparamagnetic iron oxide particles allow magnetic resonance imaging detection of lymphocytes in the mouse. Mol Imaging 2011:1鈥?2
    52. Maggi P, Macri SM, Gaitan MI et al (2014) The formation of inflammatory demyelinated lesions in cerebral white matter. Ann Neurol 76(4):594鈥?08 4242" target="_blank" title="It opens in new window">CrossRef
    53. McAteer MA, Sibson NR, von Zur MC et al (2007) In vivo magnetic resonance imaging of acute brain inflammation using microparticles of iron oxide. Nat Med 13(10):1253鈥?258 CrossRef
    54. McFarland HF (1998) The lesion in multiple sclerosis: clinical, pathological, and magnetic resonance imaging considerations. J Neurol Neurosurg Psychiatry 64(Suppl 1):S26鈥揝30
    55. Mei F, Fancy SP, Shen YA et al (2014) Micropillar arrays as high-throughput screening platform for therapeutics in multiple sclerosis. Nat Med 20(8):954鈥?61 CrossRef
    56. Miller IS, Lynch I, Dowling D et al (2010) Surface induced cell signaling events control actin rearrangements an motility. J Biomed Mater Res A 93:493鈥?04
    57. Mondal S, Martinson JA, Ghosh S et al (2012) Protection of Tregs, suppression of Th1 and Th17 cells, and amelioration of experimental allergic encephalomyelitis by physically-modified saline. PLoS ONE 7(12):e51869. doi:10.13171/journal.pone.0051869 CrossRef
    58. Neuwelt EA et al (2007) The potential of ferumoxytol nanoparticle magnetic resonance imaging, perfusion and angiography in central nervous system malignancy: a pilot study. Neurosurgery 60(4):601鈥?11 CrossRef
    59. Nylander A, Hafler DA (2012) Multiple. Scler J Clin Invest 122(4):1180鈥?188 49" target="_blank" title="It opens in new window">CrossRef
    60. Otsuka H, Nagasaki Y, Kataoka K (2003) PEGylated nanoparticles for biological and pharmaceutical application. Adv Drug Deliv Rev 55(3):403鈥?19 409X(02)00226-0" target="_blank" title="It opens in new window">CrossRef
    61. Oude Engberink RD, Blezer EL, Hoff EI et al (2008) MRI of monocyte infiltration in an animal model of neuroinflammation using SPIO-labeled monocytes of free USPIO. J Cereb Blood Flow Metab 28(4):841鈥?51 CrossRef
    62. Papa S, Rossi F, Ferrari R et al (2013) Selective nanovector mediated treatment of activated proinflammatory microglia/macrophages in spinal cord injury. ACS Nano 7(11):9881鈥?895 4036014" target="_blank" title="It opens in new window">CrossRef
    63. Papa S, Ferrari R, De Paola M et al (2014) Polymeric nanoparticle system to target activated microglia/macrophages in spinal cord injury. J Control Rel 174:15鈥?6 CrossRef
    64. Park JY, Baek MJ, Choi ES et al (2009) Paramagnetic ultrasmall gadolinium oxide nanoparticles as advanced T1 MRI contrast agent: account for large longitudinal relaxivity, optimal particle diameter, and in vivo T1 MR images. ACS Nano 3(11):3663鈥?669 CrossRef
    65. Perea G, Mriganka S, Araque A (2014) Neuron-glia networks: integral gear of brain function. Front Cell Neurosci 8, article 378 4.00378" target="_blank" title="It opens in new window">CrossRef
    66. Prineas JW, Parratt JD (2012) Oligodendrocytes and the early multiple sclerosis lesion. Ann Neurol 72(1):18鈥?1 4" target="_blank" title="It opens in new window">CrossRef
    67. Ransohoff RM, Cadorna AE (2010) The myeloid cells of the central nervous system parenchyma. Nature 468(7321):253鈥?62 CrossRef
    68. Reboldi A, Coisne C, Baumjohann D et al (2009) C-C chemokine receptor 6-regulated entry of TH-17 cells into the CNS through the choroid plexus is required for the initiation of EAE. Nat Immunol 10(5):514鈥?23 CrossRef
    69. Robinson SP, Howe FA, Griffiths JR et al (2007) Susceptibility contrast magnetic resonance imaging determination of fractional tumor blood volume: a noninvasive imaging biomarker of response to the vascular disrupting agent ZD6126. Int J Radiat Oncol Biol Phys 69(3):872鈥?79 CrossRef
    70. Ruiz-Cabello J, Walczak P, Kedziorek DA et al (2008) In vivo hot spot MR imaging of neural stem cells using fluorinated nanoparticles. Magn Reson Med 60(6):1506鈥?511 CrossRef
    71. Saleh A, Wiedermann D, Schroeter M et al (2004) Central nervous system inflammatory response after cerebral infarction as detected by magnetic resonance imaging. NMR Biomed 17(4):163鈥?69 CrossRef
    72. Schefer PW, Barak ER, Kamalian S et al (2008) Quantitative assessment of core/penumbra mismatch in acute stroke: CT and MR perfusion imaging are strongly correlated when sufficient brain volume is imaged. Stroke 39(11):2986鈥?992 CrossRef
    73. Schmidt J, Metselaar JM, Wauben MH et al (2003) Drug targeting by long circulating liposomal glucocorticosteroids increases therapeutic efficacy in a model of multiple sclerosis. Brain 126:1895鈥?904 brain/awg176" target="_blank" title="It opens in new window">CrossRef
    74. Shah L, Yadav S, Amiji M (2013) Nanotechnology for CNS delivery of Bio-therapeutic agents. Drug Deliv Transl Res 3(4):336鈥?51 46-013-0133-3" target="_blank" title="It opens in new window">CrossRef
    75. Skaat H, Corem-Slakmon E, Grinberg I et al (2013) Antibody-conjugated, dual-modal, near-infrared fluorescent iron oxide nanoparticles for antimyloidgenic activity and specific detection of amyloid-尾 fibrils. Int J Nanomedicine 8:4063鈥?076
    76. Smirnov P (2009) Cellular magnetic resonance imaging using superparamagnetic anionic iron oxide nanoparticles: applications to in vivo trafficking of lymphocytes and cell-based anticancer therapy. Methods Mol Biol 512:333鈥?53 CrossRef
    77. Soon D, Tozer D, Altmann D et al (2007) Quantification of subtle blood-barrier disruption in non-enhancing lesions in multiple sclerosis: a study of disease and lesion subtypes. Mult Scler 13(7):884鈥?94 458507076970" target="_blank" title="It opens in new window">CrossRef
    78. Sriram S, Steiner I (2005) Experimental allergic encephalomyelitis: a misleading model of multiple sclerosis. Ann Neurol 58(6):939鈥?45 43" target="_blank" title="It opens in new window">CrossRef
    79. Steinmann L, Zamvil SS (2006) How to successfully apply studies in experimental allergic encephalomyelitis to research on multiple sclerosis. Ann Neurol 60(1):12鈥?1 CrossRef
    80. Strejan GH, St Louis J (1990) Suppression of experimental allergic encephalomyelitis by MBP-coupled lymphoid cells and by MBP-liposomes: a comparison. Cell Immunol 127:284鈥?98 49(90)90133-C" target="_blank" title="It opens in new window">CrossRef
    81. Sykova E, Jendelova P (2007) In vivo tracking of stem cells in brain and spinal cord injury. Progression Brain Res 161:367鈥?83 CrossRef
    82. t Hart BA, Masacesi L (2009) Clinical, pathological and immunologic aspects of the multiple sclerosis model in common marmoset (Callithrix jacchus). J Neuropath Exp Neurol 2009 68(4):341鈥?55 4" target="_blank" title="It opens in new window">CrossRef
    83. t Hart BA, van Meurs M, Brok HP et al (2000) A new primate model for multiple sclerosis in the common marmoset. Immunol Today 21(6):290鈥?97 CrossRef
    84. Tang T, Howarth SP, Miller SR et al (2006) Assessment of inflammatory burden contralateral to the symptomatic carotid stenosis using high-resolution ultrasmall, superparamagnetic iron oxide-enhanced MRI. Stroke 37(9):2266鈥?270 47539.99" target="_blank" title="It opens in new window">CrossRef
    85. Tofts PS, Brix G, Buckley GL et al (1999) Estimating kinetic parameters from dynamic contrast enhanced T(1)-weighted MRI of a diffusible tracer: standardized quntities and symbols. J Magn Reson Imaging 10(3):223鈥?32 CrossRef
    86. Varallyay CG, Muldoon LL, Gahramanov S et al (2009) Dynamic MRI using iron oxide nanoparticles to assess early vascular effects of antiangiogenic versus corticosteroid treatment in a glioma model. J Cereb Blood Flow Metab 29(4):853鈥?60
    87. Vellinga MM, Oude Engberink RD, Seewann A et al (2008) Pluriformity of inflammation in multiple sclerosis shown by ultra-small iron oxide particle enhancement. Brain 131:800鈥?07 brain/awn009" target="_blank" title="It opens in new window">CrossRef
    88. Weistein JS, Varallyay CG, Dosa E et al (2010) Superparamagnetic iron oxide nanoparticles: diagnostic magnetic resonance imaging and potential therapeutic applications in neurooncology and central nervous system inflammatory patholog ies, a review. J Cereb Blood Flow Metab 30(1):15鈥?5 CrossRef
    89. Wong HL, Wu XY, Bendayan R (2012) Nanotechnological advances for the delivery of CNS therapeutics. Adv Drug Deliv Rev 64:686鈥?00 CrossRef
    90. Wraith DC, Nicholson LB (2012) The adaptive immune system in diseases of the central nervous system. J Clin Invest 122(4):1172鈥?179 48" target="_blank" title="It opens in new window">CrossRef
    91. Wu X, Hu J, Zhou L et al (2008) In vivo tracking of superparamagnetic iron oxide nanoparticle-labeled mesenchymal stem cell tropism to malignant gliomas using magnetic resonance imaging. Laboratory investigation. J Neurosurg 108(2):320鈥?29
    92. Yednock TA, Cannon C, Fritz LC et al (1992) Prevention of experimental autoimmune encephalomyelitis by antibodies against alpha 4 beta 1 integrin. Nature 356(6364):63鈥?6 CrossRef
    93. Yeste A, Nadeau M, Burns EJ et al (2012) Nanoparticle-mediated codelivery of myelin antigen and tolerogenic small molecules suppresses experimental autoimmune encephalomyelitis. PNAS 109(28):11270鈥?1275 CrossRef
    94. Yuan B, Zhao L, Fu F et al (2014) A novel nanoparticle containing MOG peptide with BTLA induces T cell tolerance and prevents multiple sclerosis. Mol Immunol 57:93鈥?9 CrossRef
    95. Zhang Q, Raoof M, Chen Y et al (2010) Circulating mithocondrial DAMPs cause inflammatory responses to injury. Nature 464(7285):104鈥?07 CrossRef
  • 刊物主题:Neurosciences; Immunology; Pharmacology/Toxicology; Virology; Cell Biology;
  • 出版者:Springer US
  • ISSN:1557-1904
文摘
In the last years scientific progress in nanomaterials, where size and shape make the difference, has increased their utilization in medicine with the development of a promising new translational science: nanomedicine. Due to their surface and core biophysical properties, nanomaterials hold the promise for medical applications in central nervous system (CNS) diseases: inflammatory, degenerative and tumors. The present review is focused on nanomaterials at the neuro-immune interface, evaluating two aspects: the possible CNS inflammatory response induced by nanomaterials and the developments of nanomaterials to improve treatment and diagnosis of neuroinflammatory diseases, with a focus on multiple sclerosis (MS). Indeed, nanomedicine allows projecting new ways of drug delivery and novel techniques for CNS imaging. Despite the wide field of application in neurological diseases of nanomaterials, our topic here is to review the more recent development of nanomaterials that cross blood brain barrier (BBB) and reach specific target during CNS inflammatory diseases, a crucial strategy for CNS early diagnosis and drug delivery, indeed the main challenges of nanomedicine.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700