用户名: 密码: 验证码:
Using the end-member mixing approach to apportion sources of polycyclic aromatic hydrocarbons in various environmental compartments
详细信息    查看全文
  • 作者:Mikhail Yu. Semenov ; Irina I. Marinaite
  • 关键词:Polycyclic aromatic hydrocarbons ; Snowpack ; Soil ; Riverine water ; Bottom sediments ; Multicomponent mixing ; Source profiles ; Source contributions
  • 刊名:Environmental Earth Sciences
  • 出版年:2016
  • 出版时间:February 2016
  • 年:2016
  • 卷:75
  • 期:3
  • 全文大小:1,623 KB
  • 参考文献:Bayona JM, Casellas M, Fernandez P, Solanas AM, Albaiges J (1994) Sources and seasonal variability of mutagenic agents in the Barcelona city aerosol. Chemosphere 29(3):441–450CrossRef
    Behymer TD, Hites RA (1985) Photolysis of polycyclic aromatic hydrocarbons absorbed on simulated atmospheric particles. Environ Sci Technol 19:1004–1006CrossRef
    Belykh LI (2009) Distribution of polycyclic aromatic hydrocarbons in the soil-plant system. Eurasian Soil Sci 9:1005–1011CrossRef
    Belykh LI, Malykh YuV, Penzina EE, Smagunova AN (2002) Sources of atmosphere pollution by polycyclic aromatic hydrocarbons in industrial Transbaikalia. Atmospheric Oceanic Optics 10:944–948 (in Russian)
    Bildeman TF, Falconer RL (1999) Enantiomer ratios for apportioning two sources of chiral compounds. Environ Sci Technol 33:2299–2301CrossRef
    Brown FS, Baedecker MJ, Nissenbaum A, Kaplan IR (1972) Early diagenesis in a reducing fjord, Saanich Inlet, British Columbia—III. Changes in organic constituents of sediment. Geochim Cosmochim Ac 36:1185–1203CrossRef
    Callén MS, de la Cruz MT, López JM, Mastral AM (2011) PAH in airborne particulate matter. Carcinogenic character of PM10 samples and assessment of the energy generation impact. Fuel Process Technol 92:176–182CrossRef
    Chan Y, Hawas O, Hawker D, Vowles P, Cohen DD, Stelcer E, Simpson R, Golding G, Christensen E (2011) Using multiple type composition data and wind data in PMF analysis to apportion and locate sources of air pollutants. Atmos Environ 45:439–449CrossRef
    Chen HY, Teng YG, Wang JS (2012) Source apportionment of polycyclic aromatic hydrocarbons (PAHs) in surface sediments of the Rizhao coastal area (China) using diagnostic ratios and factor analysis with nonnegative constraints. Sci Total Environ 414:293–300CrossRef
    Choi SD (2014) Time trends in the levels and patterns of polycyclic aromatic hydrocarbons (PAHs) in pine bark, litter, and soil after a forest fire. Sci Total Environ 470:1441–1449CrossRef
    Christophersen N, Hooper RP (1992) Multivariate analysis of stream water chemical data: the use of principal component analysis for the end-member mixing problem. Water Resour Res 28:99–107CrossRef
    Demir S, Saral A (2011) A new modification to the chemical mass balance receptor model for volatile organic compound source apportionment. Clean-Soil Air Water 39(10):891–899CrossRef
    Dickhut RM, Canuel EA, Gustafson KE, Liu K, Arzayus KM, Walker SE, Edgecombe G, Gaylor MO, Macdonald EH (2000) Automotive sources of carcinogenic polycyclic aromatic hydrocarbons associated with particulate matter in the Chesapeake Bay region. Environ Sci Technol 34:4635–4640CrossRef
    Dordevic D, Petrovic S, Relic D, Mihajlidi-Zilec A (2013) Applying receptor models UNMIX and PMF on real data set of elements in PM for sources evaluation of the sea coastal side region (Southeast Adriatic Sea). Atmos Meas Tech Discuss 6:4941–4969CrossRef
    Fernandez P, Grifoll M, Fernandez P, Bayona JM, Albaiges J (1992) Bioassay-directed chemical analysis of genotoxic components in coastal sediments. Environ Sci Technol 26:817–829CrossRef
    Galarneau E (2008) Source specificity and atmospheric processing of airborne PAHs: implications for source apportionment. Atmos Environ 42:8139–8149CrossRef
    Gorshkov A, Marinaite I (2002) Investigation of PAH in atmospheric aerosols and precipitation’s of east Siberia. NATO Sci Ser IV Earth Environ Sci 16:203–208
    Gschwend PM, Hites RA (1981) Fluxes of polycyclic aromatic hydrocarbons to marine and lacustrine sediments in the northeastern United States. Geochim Cosmochim Ac 45:2359–2367CrossRef
    Guo W, He MC, Yang ZF, Zhang HY, Lin CY, Tian ZJ (2013) The distribution, sources and toxicity risks of polycyclic aromatic hydrocarbons and n-alkanes in riverine and estuarine core sediments from Daliao River watershed. Environ Earth Sci 68(7):2015–2024CrossRef
    Harrison RM, Smith DJT, Luhana L (1996) Source apportionment of atmospheric polycyclic aromatic hydrocarbons collected from an urban location in Birmingham, UK. Environ Sci Technol 30:825–832CrossRef
    Henry RC (2003) Multivariate receptor modeling by N-dimensional edge detection. Chemometr Intell Lab 65:179–189CrossRef
    Hu NJ, Huang P, Liu JH, Shi XF, Ma DY, Liu Y (2013) Source apportionment of polycyclic aromatic hydrocarbons in surface sediments of Bohai Sea, China. Environ Sci Pollut Res 20:1031–1040CrossRef
    Hu NJ, Huang P, Liu JH, Shi XF, Ma DY, Shi X, Mao J, Liu Y (2014) Characterization and source apportionment of polycyclic aromatic hydrocarbons (PAHs) in sediments in the Yellow River Estuary, China. Environ Earth Sci 71:873–883CrossRef
    Khalili NR, Scheff PA, Holsen TM (1995) PAH source fingerprints for coke ovens, diesel and gasoline engines, highway tunnels, and wood combustion emissions. Atmos Environ 29:533–542CrossRef
    Lai ICh, Chang YCh, Lee ChL, Chiou GY, Huang HCh (2013) Source identification and characterization of polycyclic aromatic hydrocarbons along the southwestern coastal of Taiwan—with a GMDH approach. J Environ Manage 115:60–68CrossRef
    Larsen RK, Baker JE (2003) Source apportionment of polycyclic aromatic hydrocarbons in the urban atmosphere: a comparison of three methods. Environ Sci Technol 37:1873–1881CrossRef
    Liang J, Ma G, Fang H, Chen L, Christie P (2011) Polycyclic aromatic hydrocarbon concentrations in urban soils representing different land use categories in Shanghai. Environ Earth Sci 62:33–42CrossRef
    Liu F, Williams M, Caine N (2004) Source waters and flow paths in a seasonally snow-covered catchment, Colorado Front Range, USA. Water Resour Res 40:W09401. doi:10.​1029/​2004WR003076
    Liu Y, Chen L, Huang Q, Li W, Tang Y, Zhao J (2009) Source apportionment of polycyclic aromatic hydrocarbons (PAHs) in surface sediments of the Huangpu River, Shanghai, China. Sci Total Environ 407:2931–2938CrossRef
    Marinaite II, Gorshkov AG, Taranenko EN, Chipanina EV, Khodzher TV (2013) Distribution of polycyclic aromatic hydrocarbons in environmental objects on the territory of Irkutsk Aluminum Plant (Shelekhov, Irkutsk region). Chem Sustain Dev 21:143–154 (in Russian)
    Nganje TN, Edet AE, Ibok UJ, Ukpabio EJ, Ibe KA, Neji P (2012) Polycyclic aromatic hydrocarbons in surface water and soil in the vicinity of fuel-oil spillage from a tank farm distribution facility, Esuk Utan, Calabar Municipality, Nigeria. Environ Earth Sci 67:81–90CrossRef
    Paatero P (1997) Least squares formulation of robust nonnegative factor analysis. Chemometr Intell Lab 37:23–35CrossRef
    Ravindra K, Mittal AK, Van Grieken R (2001) Health risk assessment of urban suspended particulate matter with special reference to polycyclic aromatic hydrocarbons: a review. Rev Environ Health 16:169–189CrossRef
    Ravindra K, Sokhi R, Van Grieken R (2008) Atmospheric polycyclic aromatic hydrocarbons: source attribution, emission factors and regulation. Atmos Environ 42:2895–2921CrossRef
    Raza M, Zakaria MP, Hashim NR, Yim UH, Kannan N, Ha SY (2013) Composition and source identification of polycyclic aromatic hydrocarbons in mangrove sediments of Peninsular Malaysia: indication of anthropogenic input. Environ Earth Sci 70(6):2425–2436CrossRef
    Semenov MYu, Marinaite II (2015) Multi-source apportionment of polycyclic aromatic hydrocarbons using end-member mixing approach. Environ Earth Sci 73(4):1769–1777CrossRef
    Semenov MYu, Zimnik EA (2015) A three-component hydrograph separation based on relationship between organic and inorganic component concentrations: a case study in Eastern Siberia, Russia. Environ Earth Sci 73(2):611–620CrossRef
    Serafim A, Lopes B, Companya R, Ferreira AM, Bebiannoa MJ (2008) Comparative petroleum hydrocarbons levels and biochemical responses in mussels from hydrothermal vents (Bathymodiolus azoricus) and coastal environments (Mytilus galloprovincialis). Mar Pollut Bull 57:529–537CrossRef
    Tobiszewski M, Namiesnik J (2012) PAH diagnostic ratios for the identification of pollution emission sources. Environ Pollut 162:110–119CrossRef
    Wang CY, Gao XL, Sun ZG, Qin ZJ, Yin XN, He SJ (2013) Evaluation of the diagnostic ratios for the identification of spilled oils after biodegradation. Environ Earth Sci 68(4):917–926CrossRef
    Watson JG, Robinson NF, Chow JC, Henry RC, Kim BM, Pace TG, Meyer EL, Nguyen Q (1990) The USEPA/DRI chemical mass balance receptor model. Environ Software 5:38–49CrossRef
    White PA, Claxton LD (2004) Mutagens in contaminated soil: a review. Mutat Res 567:227–345CrossRef
    Yue W, Stolzel M, Cyrys J, Pitz M, Heinrich J, Kreyling WG, Wichmann HE, Peters A, Wang S, Hopke PK (2008) Source apportionment of ambient fine particle size distribution using positive matrix factorization in Erfurt, Germany. Sci Tot Environ 398:133–144CrossRef
    Yunker MB, Macdonald RW (1995) Composition and origins of polycyclic aromatic hydrocarbons in the Mackenzie River and on the Beaufort Sea shelf. Arctic 48:118–129CrossRef
    Yunker MB, Macdonald RW, Vingarzan R, Mitchell RH, Goyette D, Sylvestre S (2002) PAHs in the Fraser River basin: a critical appraisal of PAH ratios as indicators of PAH source and composition. Org Geochem 33:489–515CrossRef
  • 作者单位:Mikhail Yu. Semenov (1)
    Irina I. Marinaite (1)

    1. Limnological Institute of Siberian Branch of Russian Academy of Sciences, Ulan-Batorskaya St 3, 664033, Irkutsk, Russia
  • 刊物类别:Earth and Environmental Science
  • 刊物主题:None Assigned
  • 出版者:Springer Berlin Heidelberg
  • ISSN:1866-6299
文摘
The contributions of multiple sources of polycyclic aromatic hydrocarbons (PAHs) to various environmental compartments in town of Shelekhov, Eastern Siberia, were calculated using end-member mixing approach. In all compartments twelve PAHs were analyzed, including indeno[1,2,3-c,d]pyrene, benzo[g,h,i]perylene, benzo[e]pyrene, benzo[a]pyrene, benzo[k]fluoranthene, benzo[b]fluoranthene, chrysene, benzo[a]anthracene, pyrene, fluoranthene, anthracene, and phenanthrene. The results of principal component analysis (PCA) obtained for snowpack, soil, and bottom sediments indicated that the eight heavier PAHs explain more variability than twelve PAHs. The highest proportion of variability in the PAH composition of the riverine water was explained by all twelve measured PAHs. The PCA results also showed that the number of PAH sources for snowpack, soil, riverine water, and bottom sediments is equal to 3, 3, 2, and 3, correspondingly. Aluminum smelter, oil-fired boilers, and residential wood combustion are end-member sources of PAH for snowpack, riverine water and sediments, whereas a spreader stocker and residential coal combustion are auxiliary sources. The most important contributors to soil PAHs were oil-fired boilers and grass fires.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700