用户名: 密码: 验证码:
Genetic analysis of durable resistance to Magnaporthe oryzae in the rice accession Gigante Vercelli identified two blast resistance loci
详细信息    查看全文
  • 作者:Simona Urso ; Francesca Desiderio ; Chiara Biselli…
  • 关键词:Rice ; Blast disease ; Durable resistance ; Genetic mapping ; RNA ; seq ; NB ; LRR ; Candidate genes
  • 刊名:Molecular Genetics and Genomics
  • 出版年:2016
  • 出版时间:February 2016
  • 年:2016
  • 卷:291
  • 期:1
  • 页码:17-32
  • 全文大小:1,967 KB
  • 参考文献:Ashikawa I, Hayashi N, Yamane H, Kanamori H, Wu J, Matsumoto T, Ono K, Yano M (2008) Two adjacent nucleotide binding site–leucine-rich repeat class genes are required to confer Pikm-specific rice blast resistance. Genetics 180:2267–2276PubMed PubMedCentral CrossRef
    Bagnaresi P, Biselli C, Orrù L, Urso S, Crispino L, Abbruscato P, Piffanelli P, Lupotto E, Cattivelli L, Valè G (2012) Comparative transcriptome profiling of the early response to Magnaporthe oryzae in durable resistant vs susceptible rice (Oryza sativa L.) genotypes. PLoS One 7:e51609PubMed PubMedCentral CrossRef
    Ballini E, Morel JB, Droc G, Price A, Courtois B, Notteghem JL, Tharreau D (2008) A genome-wide meta-analysis of rice blast resistance genes and quantitative trait loci provides new insights into partial and complete resistance. Mol Plant Microbe Interact 21:859–868PubMed CrossRef
    Broman KW, Wu H, Sen S, Churchill GA (2003) R/qtl: QTL mapping in experimental crosses. Bioinformatics 19:889–890PubMed CrossRef
    Chen XW, Shang J, Chen D, Lei C, Zou Y, Zhai W, Liu G, Xu J, Ling Z, Cao G, Ma B, Wang Y, Zhao X, Li S, Zhu L (2006) A B-lectin receptor kinase gene conferring rice blast resistance. Plant J 46:794–804PubMed CrossRef
    Churchill GA, Doerge RW (1994) Empirical threshold values for quantitative trait mapping. Genetics 138:963–971PubMed PubMedCentral
    Couch BC, Kohn LM (2002) A multilocus gene genealogy concordant with host preference indicates segregation of a new species, Magnaporthe oryzae, from M. grisea. Mycologia 94:683–693PubMed CrossRef
    Dean R, Talbot NJ, Ebbole DJ, Farman ML, Mitchell TK, Orbach MJ, Thon M, Kulkarni R, Xu JR, Pan H, Read ND, Lee YH, Carbone I, Brown D, Oh YY, Donofrio N, Jeong JS, Soanes DM, Djonovic S, Kolomiets E, Rehmeyer C, Li W, Harding M, Kim S, Lebrun MH, Bohnert H, Coughlan S, Butler J, Calvo S, Ma LJ, Nicol R, Purcell S, Nusbaum C, Galagan J, Birren BW (2005) The genome sequence of the rice blast fungus Magnaporthe grisea. Nature 434:980–986PubMed CrossRef
    Devanna NB, Vijayan J, Sharma TR (2014) The blast resistance gene Pi54of cloned from Oryza officinalis interacts with Avr-Pi54 through its novel non-LRR domains. PLoS One 9:e104840PubMed PubMedCentral CrossRef
    Faivre-Rampant O, Bruschi G, Abbruscato P, Cavigliolo S, Borgo L, Lupotto E, Piffanelli P (2011) Assessment of genetic diversity in Italian rice germplasm related to agronomic traits and blast resistance (Magnaporthe oryzae). Mol Breed 27:233–246CrossRef
    Fukuoka S, Saka N, Koga H, Ono K, Shimizu T, Ebana K, Hayashi N, Takahashi A, Hirochika H, Okuno K, Yano M (2009) Loss of function of a proline-containing protein confers durable disease resistance in rice. Science 325:998–1001PubMed CrossRef
    Fukuoka S, Mizobuchi R, Saka N, Ivan S, Matsumoto T, Okuno K, Yano M (2012) A multiple gene complex on rice chromosome 4 is involved in durable resistance to rice blast. Theor Appl Genet 125:551–559PubMed PubMedCentral CrossRef
    Fukuoka S, Yamamoto SI, Mizobuchi R, Yamanouchi U, Ono K, Kitazawa N, Yasuda N, Fujita Y, Nguyen TTT, Koizumi S, Sugimoto K, Matsumoto T, Yano M (2014) Multiple functional polymorphisms in a single disease resistance gene in rice enhance durable resistance to blast. Scientific Reports 4:4550CrossRef
    Fukuoka S, Saka N, Mizukami Y, Koga H, Yamanouchi U, Yoshioka Y, Hayashi N, Ebana K, Mizobuchi R, Yano M (2015) Gene pyramiding enhances durable blast disease resistance in rice. Scientific Reports 5:7773PubMed CrossRef
    Goto I (1988) Genetic studies on resistance of rice plant to blast fungus (VII). Blast resistance genes of Kuroka. Ann Phytopathol Soc Jpn 54:460–465CrossRef
    Gururani MA, Venkatesh J, Upadhyaya CP, Nookaraju A, Pandey SK, Park SW (2012) Plant disease resistance genes: current status and future directions. Physiol Mol Plant Pathol 78:51–65CrossRef
    Haegi A, Bonardi V, Dall’Aglio E, Glissant D, Tumino G, Collins NC, Bulgarelli D, Infantino A, Stanca AM, Delledonne M, Valè G (2008) Histological and molecular analysis of barley resistance to leaf stripe. Mol Plant Pathol 9:463–478PubMed CrossRef
    Hammond-Kosack KE, Parker JE (2003) Deciphering plant–pathogen communication: fresh perspectives for molecular resistance breeding. Curr Opin Biotechnol 14:177–193PubMed CrossRef
    Hayashi K, Yoshida H (2009) Refunctionalization of the ancient rice blast disease resistance gene Pit by the recruitment of a retrotransposon as a promoter. Plant J 57:413–425PubMed CrossRef
    Hayashi N, Inoue H, Kato T, Funao T, Shirota M, Shimizu T, Kanamori H, Yamane H, Hayano-Saito Y, Matsumoto T, Yano M, Takatsuji H (2010) Durable panicle blast-resistance gene Pb1 encodes an atypical CC-NBS-LRR protein and was generated by acquiring a promoter through local genome duplication. Plant J 64:498–510PubMed CrossRef
    Hittalmani S, Parco A, Mew TV, Zeigler RS, Huang N (2000) Fine mapping and DNA marker-assisted pyramiding of the three major genes for blast resistance in rice. Theor Appl Genet 100:1121–1128CrossRef
    Jain M, Nijhawan A, Tyagi AK, Khurana JP (2006) Validation of housekeeping genes as internal control for studying gene expression in rice by quantitative real-time PCR. Biochem Biophys Res Commun 345:646–651PubMed CrossRef
    Kawahara Y, de la Bastide M, Hamilton JP, Kanamori H, McCombie WR, Ouyang S, Schwartz DC, Tanaka T, Wu J, Zhou S, Childs KL, Davidson RM, Lin H, Quesada-Ocampo L, Vaillancourt B, Sakai H, Lee SS, Kim J, Numa H, Itoh T, Buell CR, Matsumoto T (2013) Improvement of the Oryza sativa Nipponbare reference genome using next generation sequence and optical map data. Rice 6:4PubMed CrossRef
    Kim K, Choi D, Kim S, Kwak D, Choi J, Lee S, Lee B, Hwang D, Hwang I (2012) A systems approach for identifying resistance factors to rice stripe virus. Mol Plant Microbe Interact 25:534–545PubMed CrossRef
    Koide Y, Kawasaki A, Telebanco-Yanorial MJ, Hairmansis A, Nguyet NTM, Bigirimana J, Fujita D, Kobayashi N, Fukuta Y (2010) Development of pyramided lines with two resistance genes, Pish and Pib, for blast disease (Magnaporthe oryzae B. Couch) in rice (Oryza sativa L.). Plant Breed 129:670–675CrossRef
    Kosambi DD (1944) The estimation of map distance from recombination values. Ann Eugen 12:172–175CrossRef
    Kou Y, Wang S (2010) Broad-spectrum and durability: understanding of quantitative disease resistance. Curr Opin Plant Biol 13:181–185PubMed CrossRef
    Lander E, Botstein D (1989) Mapping mendelian factors underlying quantitative traits using RFLP linkage maps. Genetics 121:185–199PubMed PubMedCentral
    Langmead B, Trapnell C, Pop M, Salzberg SL (2009) Ultrafast and memory-efficient alignment of short DNA sequences to the human genome. Genome Biol 10:R25PubMed PubMedCentral CrossRef
    Lee S, Song M, Seo Y, Kim H, Ko S, Cao P, Suh J, Yi G, Roh J, Lee S, An G, Hahn T, Wang G, Ronald P, Jeon J (2009) Rice Pi5-mediated resistance to Magnaporthe oryzae requires the presence of two coiled-coil-nucleotide-binding-leucine-rich repeat genes. Genetics 181:1627–1638PubMed PubMedCentral CrossRef
    Li J, Xie Y, Dai A, Liu L, Li Z (2009) Root and shoot traits responses to phosphorus deficiency and QTL analysis at seedling stage using introgression lines of rice. J Genet Genomics 36:173–183PubMed CrossRef
    Li Y, Xia Q, Kou H, Wang D, Lin X, Wu Y, Xu C, Xing S, Liu B (2011) Induced Pib expression and resistance to Magnaporthe grisea are compromised by cytosine demethylation at critical promoter regions in rice. J Integrative Plant Biol 53:814–823CrossRef
    Lin F, Chen S, Que Z, Wang L, Liu X, Pan Q (2007) The blast resistance gene Pi37 encodes a nucleotide binding site leucine-rich repeat protein and is a member of a resistance gene cluster on rice chromosome 1. Genetics 177:1871–1880PubMed PubMedCentral CrossRef
    Liu J, Wang X, Mitchell T, Hu Y, Liu X, Dai L, Wang G (2010) Recent progress and understanding of the molecular mechanisms of the rice—Magnaporthe oryzae interaction. Mol Plant Pathol 11:419–427PubMed CrossRef
    Luo S, Peng J, Li K, Wang M, Kuang H (2011) Contrasting evolutionary patterns of the Rp1 resistance gene family in different species of Poaceae. Mol Biol Evol 28:313–325PubMed CrossRef
    Luo S, Zhang Y, Hu Q, Chen J, Li K, Lu C, Liu H, Wang W, Kuang H (2012) Dynamic nucleotide-binding site and leucine-rich repeat-encoding genes in the grass family. Plant Physiol 159:197–210PubMed PubMedCentral CrossRef
    McClung AM, Marchetti MA, Webb BD, Bollich CN (1997) Registration of ‘Jefferson’ rice. Crop Sci 37:629–630CrossRef
    McCouch SR (2008) Gene nomenclature system for rice. Rice 1:72–84CrossRef
    McCouch SR, Teytelman L, Xu Y, Lobos KB, Clare K, Walton M, Fu B, Maghirang R, Li Z, Xing Y, Zhang Q, Kono I, Yano M, Fjellstrom R, DeClerck G, Schneider D, Cartinhour S, Ware D, Stein L (2002) Development and mapping of 2240 new SSR markers for rice (Oryza sativa L.). DNA Res 9:257–279PubMed CrossRef
    Meyers BC, Kaushik S, Nandety RS (2005) Evolving disease resistance genes. Curr Opin Plant Biol 8:129–134PubMed CrossRef
    Nguyen TT, Koizumi S, La TN, Zenbayashi KS, Ashizawa T, Yasuda N, Imazaki I, Miyasaka A (2006) Pi35(t), a new gene conferring partial resistance to leaf blast in the rice cultivar Hokkai 188. Theor Appl Genet 113:697–704PubMed CrossRef
    Nyquist WE (1991) Estimation of heritability and prediction of selection response in plant populations. Crit Rev Plant Sci 10:235–322CrossRef
    Rai AK, Kumar SP, Gupta SK, Gautam N, Singh NK, Sharma TR (2011) Functional complementation of rice blast resistance gene Pi-kh (Pi54) conferring resistance to diverse strains of Magnaporthe oryzae. J Plant Biochem Biotech 20:55–65CrossRef
    Rao Y, Dong G, Zeng D, Hu J, Zeng L, Gao Z, Zhang G, Guo L, Qian Q (2010) Genetic analysis of leaffolder resistance in rice. J Genet Genomics 37:325–331PubMed CrossRef
    Roumen E, Levy M, Notteghem JL (1997) Characterisation of the European pathogen population of Magnaporthe grisea by DNA fingerprinting and pathotype analysis. Eur J Plant Pathol 103:363–371CrossRef
    Sato H, Takeuchi Y, Hirabayashi H, Nemoto H, Hirayama M, Kato H, Imbe T, Ando I (2006) Mapping QTLs for field resistance to rice blast in the Japanese upland rice variety Norin 12. Breed Sci 56:415–418CrossRef
    Sen S, Churchill GA (2001) A statistical framework for quantitative trait mapping. Genetics 159:371–387PubMed PubMedCentral
    Sharma TR, Rai AK, Gupta SK, Vijayan J, Devanna BN, Ray S (2012) Rice blast management through host-plant resistance: retrospect and prospects. Agric Res 1:37–52CrossRef
    Skamnioti P, Gurr SJ (2009) Against the grain: safeguarding rice from rice blast disease. Trends Biotechnol 27:141–150PubMed CrossRef
    Tacconi G, Baldassarre V, Lanzanova C, Faivre-Rampant O, Cavigiolo S, Urso S, Lupotto E, Valè G (2010) Haplotype analysis of genomic regions associated to broad effective blast resistance genes for marker development in rice. Mol Breed 26:595–617CrossRef
    Takahashi A, Hayashi N, Miyao A, Hirochika H (2010) Unique features of the rice blast resistance Pish locus revealed by large scale retrotransposon-tagging. BMC Plant Biol 10:175PubMed PubMedCentral CrossRef
    Thorvaldsdóttir H, Robinson JT, Mesirov JP (2012) Integrative Genomics Viewer (IGV): high-performance genomics data visualization and exploration. Brief Bioinform 14:178–192PubMed PubMedCentral CrossRef
    Valent B, Khang CH (2010) Recent advances in rice blast effector research. Curr Opin Plant Biol 13:434–441PubMed CrossRef
    Van Ooijen JW (2006) JoinMap 4, software for the calculation of genetic linkage maps in experimental populations. Wageningen, Kyazma BV
    Wang X, Lee S, Wang J, Ma J, Bianco T, Jia Y (2014) Current advances on genetic resistance to rice blast disease. In: Yan W, Bao J (eds) Rice—germplasm, genetics and improvement, InTech, pp 195–217
    Xu X, Hayashi N, Wang C-T, Fukuoka S, Kawasaki S, Takatsuji H, Jang C-J (2014) Rice blast resistance gene Pikahei-1(t), a member of a resistance gene cluster on chromosome 4, encodes a nucleotide-binding site and luecine-rich repeat protein. Mol Breed 34:691–700CrossRef
    Yoshimura S, Yamanouchi U, Katayose Y, Toki S, Wang ZX, Kono I, Kuruta N, Yano M, Iwata N, Sasaki T (1998) Expressionof Xa1, a bacterial blight resistance gene in rice, is induced by bacterial inoculation. Proc Natl Acad Sci USA 95:1663–1668PubMed PubMedCentral CrossRef
    Zeigler RS, Leong SA, Teng PS (1994) Rice Blast Disease. CAB International, Wallingford, pp 1–626
    Zhou Y, Bui T, Auckland LD, Illiams CG (2002) Direct fluorescent primers are superior to M13-tailed primers for Pinus taeda microsatellites. Biotechniques 31:24–28
  • 作者单位:Simona Urso (1)
    Francesca Desiderio (1)
    Chiara Biselli (1) (2)
    Paolo Bagnaresi (1)
    Laura Crispino (3)
    Pietro Piffanelli (3)
    Pamela Abbruscato (3)
    Federica Assenza (1) (4)
    Giada Guarnieri (1) (5)
    Luigi Cattivelli (1)
    Giampiero Valè (1) (2)

    1. Council for Agricultural Research and Economics (CRA), Genomics Research Centre, Via S. Protaso, 302, 29017, Fiorenzuola d’Arda, Piacenza, Italy
    2. Council for Agricultural Research and Economics (CRA), Rice Research Unit, S.S. 11 to Torino, Km 2,5, 13100, Vercelli, Italy
    3. Rice Genomics Group, Parco Tecnologico Padano, Via Einstein, 26900, Lodi, Italy
    4. Plant Biochemistry, Institute of Agricultural Sciences, ETH Zürich, LFW D 38 Universitätstrasse 2, 8092, Zurich, Switzerland
    5. Continental Semences S.p.A., via Monzato 9, 43029, Traversetolo, PR, Italy
  • 刊物类别:Biomedical and Life Sciences
  • 刊物主题:Life Sciences
    Cell Biology
    Biochemistry
    Microbial Genetics and Genomics
  • 出版者:Springer Berlin / Heidelberg
  • ISSN:1617-4623
文摘
Rice cultivars exhibiting durable resistance to blast, the most important rice fungal disease provoking up to 30 % of rice losses, are very rare and searching for sources of such a resistance represents a priority for rice-breeding programs. To this aim we analyzed Gigante Vercelli (GV) and Vialone Nano (VN), two temperate japonica rice cultivars in Italy displaying contrasting response to blast, with GV showing a durable and broad-spectrum resistance, whereas VN being highly susceptible. An SSR-based genetic map developed using a GV × VN population segregating for blast resistance identified two blast resistance loci, localized to the long arm of chromosomes 1 and 4 explaining more than 78 % of the observed phenotypic variation for blast resistance. The pyramiding of two blast resistance QTLs was therefore involved in the observed durable resistance in GV. Mapping data were integrated with information obtained from RNA-seq expression profiling of all classes of resistance protein genes (resistance gene analogs, RGAs) and with the map position of known cloned or mapped blast resistance genes to search candidates for the GV resistant response. A co-localization of RGAs with the LOD peak or the marker interval of the chromosome 1 QTL was highlighted and a valuable tool for selecting the resistance gene during breeding programs was developed. Comparative analysis with known blast resistance genes revealed co-positional relationships between the chromosome 1 QTL with the Pi35/Pish blast resistance alleles and showed that the chromosome 4 QTL represents a newly identified blast resistance gene. The present genetic analysis has therefore allowed the identification of two blast resistance loci in the durable blast-resistant rice cultivar GV and tools for molecular selection of these resistance genes. Keywords Rice Blast disease Durable resistance Genetic mapping RNA-seq NB-LRR Candidate genes

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700