用户名: 密码: 验证码:
Oxidation resistance of a SiC–ZrB2 coating prepared by a novel pack cementation on SiC-coated graphite
详细信息    查看全文
  • 作者:Jalil Pourasad ; Naser Ehsani ; Zia Valefi
  • 刊名:Journal of Materials Science
  • 出版年:2017
  • 出版时间:February 2017
  • 年:2017
  • 卷:52
  • 期:3
  • 页码:1639-1646
  • 全文大小:
  • 刊物类别:Chemistry and Materials Science
  • 刊物主题:Materials Science, general; Characterization and Evaluation of Materials; Polymer Sciences; Continuum Mechanics and Mechanics of Materials; Crystallography and Scattering Methods; Classical Mechanics;
  • 出版者:Springer US
  • ISSN:1573-4803
  • 卷排序:52
文摘
In this study, a functionally graded SiC layer was prepared on a graphite substrate by a pack cementation method with Si, C, and Al2O3 powders. Then a SiC–ZrB2 coating was developed by an in situ reaction method through a novel pack cementation technique at 1873 K with Zr, Si, and B4C powders to improve the oxidation protection ability of SiC-coated graphite. The phase compositions, microstructure, and element distribution of the coating were identified by X-ray diffraction, scanning electron microscopy, and energy-dispersive X-ray spectroscopy, respectively. The isothermal oxidation test of the coated samples was accomplished at 1773 K in air for 10 h. According to the results, a 550-μm thick graded C–SiC layer was detected at the graphite–coating interface and a SiC–ZrB2 coating was formed on the first coating. The SiC–ZrB2 coating could efficiently enhance oxidation resistance of graphite with a mass gain of +1.1 %, as compared with a −1.2 % mass loss of the first step coating. The excellent protection ability of SiC–ZrB2 coating could be ascribed to the high thermally stable ZrSiO4.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700