用户名: 密码: 验证码:
Soil microbial respiration and PICT responses to an industrial and historic lead pollution: a field study
详细信息    查看全文
  • 作者:Annette Bérard ; Line Capowiez…
  • 关键词:Microbial ecotoxicology ; Soil microbial communities ; Microbial physiological traits ; Pollution ; induced community tolerance ; Substrate ; induced respiration ; Heavy metals ; Lead ; MicroResp™
  • 刊名:Environmental Science and Pollution Research
  • 出版年:2016
  • 出版时间:March 2016
  • 年:2016
  • 卷:23
  • 期:5
  • 页码:4271-4281
  • 全文大小:570 KB
  • 参考文献:Anderson JPE, Domsch KH (1978) A physiological method for the quantitative measurement of microbial biomass in soil. Soil Biol Biochem 10:215–221CrossRef
    Anderson JPE, Domsch KH (1985) Maintenance carbon requirements of actively-metabolizing microbial populations under in situ conditions. Soil Biol Biochem 17:197–203CrossRef
    Anderson JPE, Domsch KH (1993) The metabolic quotient for CO2 (qCO2) as a specific activity parameter to assess the effects of environmental conditions, such as pH, on the microbial biomass of forest soils. Soil Biol Biochem 25:393–395CrossRef
    Anderson JAH, Hooper MJ, Zak JC, Cox SB (2009) Characterization of the structural and functional diversity of indigenous soil microbial communities in smelter-impacted and nonimpacted soils. Environ Toxicol Chem 28:534–541CrossRef
    Azarbad H, Niklinska M, van Gestel CAM, van Straalen NM, Roling WFM, Laskowski R (2013) Microbial community structure and functioning along metal pollution gradients. Environ Toxicol Chem 32:1992–2002CrossRef
    Baath E (1992) Measurement of heavy soil bacteria using thymidine incorporation into bacteria extracted after homogenization-centrifugation. Soil Biol Biochem 11:1167–1172CrossRef
    Baath E, Anderson T-H (2003) Comparison of soil fungal/bacterial ratios in a pH gradient using physiological and PLFA-based techniques. Soil Biol Biochem 35:955–963CrossRef
    Baath E, Dıaz-Ravina M, Bakken LR (2005) Microbial biomass, community structure and metal tolerance of a naturally Pb-enriched forest soil. Microb Ecol 50:496–505CrossRef
    Banning NC, Lalor BM, Cookson WR, Grigg AH, Murphy DV (2012) Analysis of soil microbial community level physiological profiles in native and post-mining rehabilitation forest: which substrates discriminate? Appl Soil Ecol 56:27–34CrossRef
    Bárcenas-Moreno G, Rousk J, Bååth E (2011) Fungal and bacterial recolonisation of acid and alkaline forest soils following artificial heat treatments. Soil Biol Biochem 43:1023–1033CrossRef
    Ben Sassi M, Dolinger J, Renault P, Tlili A, Bérard A (2012) The FungiResp method: an application of the MicroResp™ method to assess fungi in microbial communities as soil biological indicators. Ecol Indic 23:482–490CrossRef
    Bérard A, Dorigo U, Humbert JF, Leboulanger C, Seguin F (2002) PICT (Pollution-Induced Community Tolerance) concept applied to algal communities: a tool for real risk-assessment in aquatic sciences. Inter J Limnol 38:247–261
    Bérard A, Bouchet T, Sévenier G, Pablo AL, Gros R (2011) Resilience of soil microbial communities impacted by severe drought and high temperature in the context of Mediterranean heat waves. Eur J Soil Biol 47:333–342CrossRef
    Bérard A, Mazzia C, Sappin-Didier V, Capowiez L, Capowiez Y (2014) Use of the MicroResp™ method to assess Pollution-Induced Community Tolerance in the context of metal soil contamination. Ecol Indic 40:27–33CrossRef
    Blanck H (2002) A critical review of procedures and approaches used for assessing pollution-induced community tolerance (PICT) in biotic communities. Hum Ecol Risk Assess 8:1003–1034CrossRef
    Blanck H, Wänkberg S-Å, Molander S (1988) Pollution-induced community tolerance - a new ecotoxicological tool. In: Cairs J Jr, Pratt JR (eds) Functional testing of aquatic biota for estimating hazards of chemicals. ASTM STP 988, Philadelphia, pp 219–230CrossRef
    Boivin MEY, Breure AM, Posthuma L, Rutgers M (2002) Determination of field effects of contaminants—significance of Pollution-Induced Community Tolerance. Hum Ecol Risk Asses 8:1035–1055CrossRef
    Boivin MEY, Greve GD, Kools SAE, van der Wurff AWG, Leeflang P, Smit E, Breure AM, Rutgers M, van Straalen NM (2006) Discriminating between effects of metals and natural variables in terrestrial bacterial communities. Appl Soil Ecol 34:103–113CrossRef
    Brookes PC (1995) The use of microbial parameters in monitoring soil pollution by heavy metals. Biol Fertil Soils 19:269–279CrossRef
    Campbell CD, Chapman SJ, Cameron CM, Davidson MS, Potts JM (2003) A rapid microtiter plate method to measure carbon dioxide evolved from carbon substrate amendments so as to determine the physiological profiles of soil microbial communities by using whole soil. Appl Environ Microbiol 69(6):3593–3599CrossRef
    Chander K, Klein T, Eberhardt U, Joergensen RG (2002) Decomposition of carbon-14-labelled wheat straw in repeatedly fumigated and non-fumigated soils with different levels of heavy metal contamination. Biol Fertil Soils 35:86–91CrossRef
    Chapman SJ, Campbell CD, Artz RE (2007) Assessing CLPPs using MicroResp™ - A comparison with biolog and multi-SIR. J Soil Sed 7(6):406–410CrossRef
    Chessel D, Dufour AB, Thioulouse J (2004) The ade4 package-I: one-table methods. R News 4:5–10
    Clements WH, Rohr JR (2009) Community responses to contaminants: using basic ecological principles to predict ecotoxicological effects. Crit Rev Environ Toxicol Chem 28:1789–1800CrossRef
    Degens BP, Schipper LA, Sparling GP, Duncan LC, Vukovic M (2000) Decreases in organic C reserves in soils can reduce the catabolic diversity of soil microbial communities. Soil Biol Biochem 32:189–196CrossRef
    Dilly O, Franke G, Nii-Annang S, Weber K, Freese D, Hüttl R-F (2008) Soil respiratory indicators including carbon isotope characteristics in response to copper. Geomicrob J 25:390–395CrossRef
    Dumat C, Quenea K, Bermond A, Toinen S, Benedetti MF (2006) Study of the trace metal ion influence on the turnover of soil organic matter in cultivated contaminated soils. Environ Pollut 142:521–529. doi:10.​1016/​j.​envpol.​2005.​10.​027 CrossRef
    Flynn HC, Meharg AA, Bowyer PK, Paton GI (2003) Antimony bioavailability in mine soils. Environ Pollut 124:93–100CrossRef
    Giller KE, Witter E, McGrath SP (2009) Heavy metals and soil microbes. Soil Biol Biochem 41:2031–2037CrossRef
    Hall JL (2002) Cellular mechanisms for heavy metal detoxification and tolerance. J Exp Bot 53:1–11CrossRef
    Jänsch S, Römbke J, Schallnaß H-J, Terytze K (2007) Derivation of Soil Values for the Path ‘Soil – Soil Organisms’ for Metals and Selected Organic Compounds Using Species Sensitivity Distributions. Env Sci Pollut Res 14(5):308–318CrossRef
    Kizilkaya R, Aşkin T, Bayrakli B, Sağlam M (2004) Microbiological characteristics of soils contaminated by heavy metals. Eur J Soil Biol 40:95–102CrossRef
    Lalor BM, Cookson WR, Murphy DV (2007) Comparison of two methods that assess soil community level physiological profiles in a forest ecosystem. Soil Biol Biochem 39:454–462CrossRef
    Lekfeldt JDS, Magid J, Holm PE, Nybroe O, Brandt KK (2014) Evaluation of the leucine incorporation technique for detection of pollution-induced community tolerance to copper in a long-term agricultural field trial with urban waste fertilizers. Environmental Pollution 194:78–85CrossRef
    Lévêque T, Capowiez Y, Schreck E, Mazzia C, Auffan M, Foucault Y, Austruy A, Dumat C (2013) Assessing ecotoxicity and uptake of metals and metalloids in relation to two different earthworm species (Eiseina hortensis and Lumbricus terrestris). Environ Pollut 179:232–241. doi:10.​1016/​j.​envpol.​2013.​03.​066 CrossRef
    Lévêque T, Capowiez Y, Schreck E, Mombo S, Mazzia C, Foucault Y, Dumat C (2015) Effects of historic metal(loid) pollution on earthworm communities. STOTEN 511:738–746
    Masto RE, Ahirwar R, George J, Ram LC, Selvi VA (2011) Soil biological and biochemical response to Cd exposure. Open J Soil Sci 1:8–15CrossRef
    Nahmani J, Rossi JP (2003) Soil macro-invertebrates as indicators of pollution by heavy metals. Comptes Rendus Biologies 326:295–303CrossRef
    Niu ZX, Xiaodong XD, Sun LN, Sun TH (2013) Dynamics of three organic acids (malic, acetic and succinic acid) in sunflower exposed to cadmium and lead. Internat J Phytoremed 15:690–702CrossRef
    Pan J, Yu L (2011) Effects of Cd or/and Pb on soil enzyme activities and microbial community structure. Ecol Engin 37:1889–1894CrossRef
    Puglisi E, Hamon R, Vasileiadis S, Coppolecchia D, Trevisan M (2012) Adaptation of soil microorganisms to trace element contamination: a review of mechanisms, methodologies, and consequences for risk Assessment and remediation. Crit Rev Environ Sci Tech 42:2435–2470CrossRef
    Quenea K, Lamy I, Winterton P, Bermond A, Dumat C (2009) Interactions between metals and soil organic matter in various particle size fractions of soil contaminated with waste water. Geoderma 149:217–223. doi:10.​1016/​j.​geoderma.​2008.​11.​037 CrossRef
    Rusk JA, Hamon RE, Stevens DP, McLaughlin MJ (2004) Adaptation of soil biological nitrification to heavy metals. Environ Sci Technol 38:3092–3097CrossRef
    Schreck E, Foucault Y, Geret F, Pradere P, Dumat C (2011) Influence of soil ageing on bioavailability and ecotoxicity of lead carried by process waste metallic ultrafine particles. Chemosphere 85:1555–1562. doi:10.​1016/​j.​chemosphere.​2011.​07.​059 CrossRef
    Shahid M, Xiong T, Masood N, Lévêque T, Quenea K, Austruy A, Foucault Y, Dumat C (2014) Influence of plant species and phosphorus amendments on metal speciation and bio- availability in a smelter impacted soil: a case study of food chain contamination. J. Soils Sediments 14:655–65CrossRef
    Sharma SS, Dietz K-J (2006) The significance of amino acids and amino acid-derived molecules in plant responses and adaptation to heavy metal stress. J Exp Bot 57:711–726CrossRef
    Six J, Frey SD, Thiet RK, Batten KM (2006) Bacterial and fungal contributions to carbon sequestration in agroecosystems. Soil Sci Soc Am J 70:555–569CrossRef
    Stefanowicz AM, Niklinska M, Laskowski R (2009) Pollution-induced tolerance of soil bacterial communities in meadow and forest ecosystems polluted with heavy metals. Eur J Soil Biol 45:363–369CrossRef
    Stefanowicz AM, Niklinska M, Kapusta P, Szarek-Łukaszewska G (2010) Pine forest and grassland differently influuence the response of soil microbial communities to metal contamination. Sci Total Environ 408:6134–6141CrossRef
    Tlili A, Marechal M, Montuelle B, Volat B, Dorigo U, Bérard A (2011a) Use of the MicroResp™ method to assess pollution-induced community tolerance to metals for lotic biofilms. Environ Pollut 15:18–24CrossRef
    Tlili A, Marechal M, Bérard A, Volat B, Montuelle B (2011b) Enhanced co-tolerance and co-sensitivity from long-term metal exposures of heterotrophic and autotrophic components of fluvial biofilms. Sci Total Environ 409(20):4335–4343CrossRef
    Tlili A, Bérard A, Blanck H, Bouchez A, Cassio F, Eriksson Km, Morin S, Montuelle B, Navarro E, Pascoal C, Pesce S, Schmitt-Jansen M, Behra R (2015) Pollution-induced community tolerance (PICT): towards an ecologically relevant risk assessment of chemicals in aquatic systems, Freswater Biol. online: 8 APR 2015. http://​dx.​doi.​org/​10.​1111/​fwb.​12558
    Wakelin S, Gerard E, Black A, Hamonts K, Condron L, Yuan T, van Nostrand J, Zhou J, O’Callaghan M (2014) Mechanisms of pollution induced community tolerance in a soil microbial community exposed to Cu. Environ Poll 190:1–9CrossRef
    Wang F, Yaoa J, Sia Y, Chena H, Russela M, Chena K, Qiana Y, Zarayb G, Bramantic E (2010) Short-time effect of heavy metals upon microbial community activity. J Hazard Mater 173:510–516CrossRef
  • 作者单位:Annette Bérard (1) (2)
    Line Capowiez (1) (2)
    Stéphane Mombo (3) (4)
    Eva Schreck (5)
    Camille Dumat (6) (7)
    Frédéric Deola (8)
    Yvan Capowiez (9)

    1. INRA, UMR1114 EMMAH, 84914, Avignon, France
    2. UAPV, UMR1114 EMMAH, 84914, Avignon, France
    3. Université de Toulouse, INP-ENSAT, Av. de l’Agrobiopôle, 31326, Castanet-Tolosan, France
    4. UMR 5245 CNRS-INP-UPS, EcoLab (Laboratoire d’écologie Fonctionnelle), 31326, Castanet-Tolosan, France
    5. Géosciences Environnement Toulouse (GET), Observatoire Midi Pyrénées, Université de Toulouse, CNRS, IRD, 14 avenue E. Belin, 31400, Toulouse, France
    6. Université de Toulouse, INP-ENSAT, Av. de l’Agrobiopôle, 31326, Castanet-Tolosan, France
    7. Certop, UMR5044-Centre d’Etude et de Recherche Travail Organisation Pouvoir, 31000, Toulouse, France
    8. STCM, Société de Traitements Chimiques des Métaux, 30 Avenue Fondeyre, 31200, Toulouse, France
    9. UR 1115 INRA PSH, 84914, Avignon, France
  • 刊物类别:Earth and Environmental Science
  • 刊物主题:Environment
    Environment
    Atmospheric Protection, Air Quality Control and Air Pollution
    Waste Water Technology, Water Pollution Control, Water Management and Aquatic Pollution
    Industrial Pollution Prevention
  • 出版者:Springer Berlin / Heidelberg
  • ISSN:1614-7499
文摘
We performed a field investigation to study the long-term impacts of Pb soil contamination on soil microbial communities and their catabolic structure in the context of an industrial site consisting of a plot of land surrounding a secondary lead smelter. Microbial biomass, catabolic profiles, and ecotoxicological responses (PICT) were monitored on soils sampled at selected locations along 110-m transects established on the site. We confirmed the high toxicity of Pb on respirations and microbial and fungal biomasses by measuring positive correlations with distance from the wall factory and negative correlation with total Pb concentrations. Pb contamination also induced changes in microbial and fungal catabolic structure (from carbohydrates to amino acids through carboxylic malic acid). Moreover, PICT measurement allowed to establish causal linkages between lead and its effect on biological communities taking into account the contamination history of the ecosystem at community level. The positive correlation between qCO2 (based on respiration and substrate use) and PICT suggested that the Pb stress-induced acquisition of tolerance came at a greater energy cost for microbial communities in order to cope with the toxicity of the metal. In this industrial context of long-term polymetallic contamination dominated by Pb in a field experiment, we confirmed impacts of this metal on soil functioning through microbial communities, as previously observed for earthworm communities.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700