用户名: 密码: 验证码:
Characterization of the temperate phage vB_RleM_PPF1 and its site-specific integration into the Rhizobium leguminosarum F1 genome
详细信息    查看全文
  • 作者:Anupama P. Halmillawewa ; Marcela Restrepo-Córdoba…
  • 关键词:Lysogeny ; Rhizobium ; Site ; specific recombination ; Bacteriophage ; Myoviridae
  • 刊名:Molecular Genetics and Genomics
  • 出版年:2016
  • 出版时间:February 2016
  • 年:2016
  • 卷:291
  • 期:1
  • 页码:349-362
  • 全文大小:2,290 KB
  • 参考文献:Abedon S (2008) Bacteriophage ecology: population growth, evolution, and impact of bacterial viruses. Cambridge University Press, CambridgeCrossRef
    Adams MH (1959) Bacteriophages. Interscience Publishers Inc, New York
    Aksyuk AA, Kurochkina LP, Fokine A, Forouhar F, Mesyanzhinov VV, Tong L, Rossmann MG (2011) Structural conservation of the Myoviridae phage tail sheath protein fold. Structure 19:1885–1894PubMed PubMedCentral CrossRef
    Altschul SF, Madden TL, Schäffer AA, Zhang J, Zhang Z, Miller W, Lipman DJ (1997) Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucl Acids Res 25:3389–3402PubMed PubMedCentral CrossRef
    Aziz RK, Bartels D, Best AA et al (2008) The RAST server: rapid annotations using subsystems technology. BMC Genomics 9:75PubMed PubMedCentral CrossRef
    Baldani JI, Weaver RW, Hynes MF, Eardly BD (1992) Utilization of carbon substrates, electrophoretic enzyme patterns, and symbiotic performance of plasmid-cured clover rhizobia. Appl Environ Microb 58:2308–2314
    Beringer JE (1974) R factor transfer in Rhizobium leguminosarum. J Gen Microbiol 84(Sep):188–198PubMed
    Blaha B, Semsey S, Ferenczi S, Csiszovszki Z, Papp PP, Orosz L (2004) A proline tRNA(CGG) gene encompassing the attachment site of temperate phage 16-3 is functional and convertible to suppressor tRNA. Mol Microbiol 54:742–754PubMed CrossRef
    Borysowski J, Weber-Dabrowska B, Górski A (2006) Bacteriophage endolysins as a novel class of antibacterial agents. Exp Biol Med 231:366–377
    Breüner A, Brønsted L, Hammer K (2001) Resolvase-like recombination performed by TP901-1 integrase. Microbiology 147:2051–2063PubMed CrossRef
    Brewer TE, Stroupe ME, Jones KM (2014) The genome, proteome and phylogenetic analysis of Sinorhizobium meliloti phage PhiM12, the founder of a new group of T4-superfamily phages. Virology 450–451:84–97PubMed CrossRef
    Brewin NJ, Wood EA, Johnston AWB, Dibb NJ, Hombrecher G (1982) Recombinant nodulation plasmids in Rhizobium leguminosarum. J Gen Microbiol 128:1817–1827
    Brüssow H, Canchaya C, Hardt WD (2004) Phages and the evolution of bacterial pathogens: from genomic rearrangements to lysogenic conversion. Microbiol Mol Biol Rev 68:560–602PubMed PubMedCentral CrossRef
    Canchaya C, Proux C, Fournous G, Bruttin A, Brüssow H (2003) Prophage genomics. Microbiol Mol Biol Rev 67:238–275PubMed PubMedCentral CrossRef
    Canchaya C, Fournous G, Brüssow H (2004) The impact of prophages on bacterial chromosomes. Mol Microbiol 53:9–18PubMed CrossRef
    Casjens SR (2011) The DNA-packaging nanomotor of tailed bacteriophages. Nat Rev Microbiol 9:647–657PubMed CrossRef
    Darling AC, Mau B, Blattner FR, Perna NT (2004) Mauve: multiple alignment of conserved genomic sequence with rearrangements. Genome Res 14:1394–1403PubMed PubMedCentral CrossRef
    Deák L, Lukács R, Buzás Z, Pálvölgyi A, Papp PP, Orosz L, Putnoky P (2010) Identification of tail genes in the temperate phage 16-3 of Sinorhizobium meliloti. J Bacteriol 192:1617–1623PubMed PubMedCentral CrossRef
    Dorgai L, Polner G, Jónás E, Garamszegi N, Ascher Z, Páy A, Dallmann G, Orosz L (1983) The detailed physical map of the temperate phage 16-3 of Rhizobium meliloti 41. Mol Gen Genet 191:430–433PubMed CrossRef
    Dziewit L, Oscik K, Barotsik D, Radlinksa M (2014) Molecular characterization of a novel temperate Sinorhizobium bacteriophage, ΦLM21, encoding DNA methyltransferase with CcrM-like specificity. J Virol 88:13111–13124PubMed PubMedCentral CrossRef
    Ferenczi S, Ganyu A, Blaha B, Semsey S, Nagy T, Csiszovszki Z, Orosz L, Papp PP (2004) Integrative plasmid vector for constructing single-copy reporter systems to study gene regulation in Rhizobium meliloti and related species. Plasmid 52:57–62PubMed CrossRef
    Freitas-Vieira A, Anes E, Moniz-Perreira J (1998) The site-specific recombination locus of mycobacteriophage Ms6 determines DNA integration at the tRNA(Ala) gene of Mycobacterium spp. Microbiology 144:3397–3406PubMed CrossRef
    Ganyu A, Csisovszki Z, Ponyi T, Kern A, Buzás Z, Orosz L, Papp P (2005) Identification of cohesive ends and genes encoding the terminase of phage 16-3. J Bacteriol 187:2526–2531PubMed PubMedCentral CrossRef
    Guo PX, Erickson S, Anderson D (1987) A small viral-RNA Is required for in vitro packaging of bacteriophage-Phi-29 DNA. Science 236:690–694PubMed CrossRef
    Halmillawewa AP, Restrepo-Córdoba M, Yost CK, Hynes MF (2015) Genomic and phenotypic characterization of Rhizobium gallicum phage vB_RglS_P106B. Microbiology 161:611–620PubMed CrossRef
    Hashem FM, Angle JS (1988) Rhizobiophage effects on Bradyrhizobium japonicum, nodulation and soybean growth. Soil Biol Biochem 20:69–73CrossRef
    Hauser MA, Scocca JJ (1992) Site-specific integration of the Haemophilus influenzae bacteriophage-Hp1—location of the boundaries of the phage attachment site. J Bacteriol 174:6674–6677PubMed PubMedCentral
    Hermesz E, Olasz F, Dorgai L, Orosz L (1992) Stable incorporation of genetic material into the chromosome of Rhizobium meliloti 41—construction of an integrative vector system. Gene 119:9–15PubMed CrossRef
    Hirsch PR (1979) Plasmid-determined bacteriocin production by Rhizobium leguminosarum. J Gen Microbiol 113:219–228CrossRef
    Hyatt D, Chen GL, Locascio PF, Land ML, Larimer FW, Hauser LJ (2010) Prodigal: prokaryotic gene recognition and translation initiation site identification. BMC Bioinform 11:119CrossRef
    Josey DP, Beynon JL, Johnston AWB, Beringer JE (1979) Strain identification in Rhizobium using intrinsic antibiotic resistance. J Appl Bacteriol 46:343–350CrossRef
    Kondorosi E, Gyuris J, Schmidt J, John M, Duda E, Hoffmann B, Schell J, Kondorosi A (1989) Positive and negative control of nod gene expression in Rhizobium meliloti is required for optimal nodulation. EMBO J 8:1331–1340PubMed PubMedCentral
    Lamb JW, Hombrecher G, Johnston AWB (1982) Plasmid determined nodulation and nitrogen fixation abilities in Rhizobium phaseoli. Mol Gen Genet 186:449–452CrossRef
    Larkin MA, Blackshields G, Brown NL, Chenna R, McGettigan PA, McWilliam H, Valentin F, Wallace IM, Wilm A, Lopez R, Thompson JD, Gibson TJ, Higgins DG (2007) Clustal W and Clustal X version 2.0. Bioinformatics 23:2947–2948PubMed CrossRef
    Laslett D, Canback B (2004) ARAGORN, a program to detect tRNA genes and tmRNA genes in nucleotide sequences. Nucl Acids Res 32:11–16PubMed PubMedCentral CrossRef
    Lech K, Reddy KJ, Sherman LA (2001) Preparing lambda DNA from phage lysates. Current Protocols in Molecular Biology. Wiley, New York
    Lee MH, Pascopella L, Jacobs WR, Hatfull GF (1991) Site-specific integration of Mycobacteriophage-L5: integration-proficient vectors for Mycobacterium smegmatis, Mycobacterium tuberculosis, and bacille Calmette–Guérin. Proc Natl Acad Sci USA 88:3111–3115PubMed PubMedCentral CrossRef
    Leiman PG, Chipman PR, Kostyuchenko VA, Mesyanzhinov VV, Rossmann MG (2004) Three-dimensional rearrangement of proteins in the tail of bacteriophage T4 on infection of its host. Cell 118:419–429PubMed CrossRef
    Lillehaug D, Birkeland N-K (1993) Characterization of genetic elements required for site specific integration of the temperate Lactococcal bacteriophage ΦLC3 and construction of integration-negative ΦLC3 mutants. J Bacteriol 175:1745–1755PubMed PubMedCentral
    Liu J, Mushegian A (2004) Displacements of prohead protease genes in the late operons of double-stranded-DNA bacteriophages. J Bacteriol 186:4369–4375PubMed PubMedCentral CrossRef
    Loessner MJ (2005) Bacteriophage endolysins—current state of research and applications. Curr Op Microbiol 8:480–487CrossRef
    Low DA, Weyand NJ, Mahan NJ (2001) Roles of DNA adenine methylation in regulating bacterial gene expression and virulence. Infect Immun 69:7197–7204PubMed PubMedCentral CrossRef
    Lowe TM, Eddy SR (1997) tRNAscan-SE: a program for improved detection of transfer RNA genes in genomic sequence. Nucl Acids Res 25:955–964PubMed PubMedCentral CrossRef
    Mendum TA, Clark IM, Hirsch PR (2001) Characterization of two novel Rhizobium leguminosarum bacteriophages from a field release site of genetically-modified rhizobia. Anton van Leeuwen 79:189–197CrossRef
    Noel KD, Sánchez A, Fernández L, Leemans J, Cevallos MA (1984) Rhizobium phaseoli symbiotic mutants with transposon Tn5 insertions. J Bacteriol 158:148–155PubMed PubMedCentral
    Olasz F, Dorgai L, Papp P, Hermesz E, Kosa E, Orosz L (1985) On the site specific recombination of phage 16-3 of Rhizobium meliloti: identification of genetic elements and att recombinations. Mol Gen Genet 201:289–295CrossRef
    Orosz L, Sváb Z, Kondorosi Á, Sík T (1973) Genetic studies on Rhizobiophage 16-3 I. Genes and functions on the chromosome. Mol Gen Genet 125:341–351PubMed
    Papp I, Dorgai L, Papp P, Jónás E, Olasz F, Orosz L (1993) The bacterial attachment site of the temperate Rhizobium phage 16-3 overlaps the 3′ end of a putative proline transfer-RNA gene. Mol Gen Genet 240:258–264PubMed CrossRef
    Pastagia M, Schuch R, Fischetti VA, Huang DB (2013) Lysins: the arrival of pathogen-directed anti-infectives. J Med Microbiol 62:1506–1516PubMed CrossRef
    Pierson LS, Kahn ML (1987) Integration of satellite bacteriophage-P4 in Escherichia coli—DNA-sequences of the phage and host regions involved in site-specific recombination. J Mol Biol 196:487–496PubMed CrossRef
    Poole PS, Blyth A, Reid CJ, Walters K (1994) Myo-inositol catabolism and catabolite regulation in Rhizobium leguminosarum bv. viciae. Microbiology 140:2787–2795CrossRef
    Priefer UB (1989) Genes involved in lipopolysaccharide production and symbiosis are clustered on the chromosome of Rhizobium leguminosarum biovar viciae VF39. J Bacteriol 171:6161–6168PubMed PubMedCentral
    Rao VB, Feiss M (2008) The bacteriophage DNA packaging motor. Annu Rev Genet 42:647–681PubMed CrossRef
    Rocha EPC, Danchin A (2002) Base composition bias might result from competition for metabolic resources. Trends Genet 18:291–294PubMed CrossRef
    Sambrook J, Fritsch EF, Maniatis T (1989) Molecular cloning—a laboratory manual. Cold Spring Harbor Laboratory Press, New York
    Santamaria RI, Bustos P, Sepúlveda-Robles O, Lozano L, Rodríguez C, Fernández JL, Juárez S, Kameyama L, Guarneros G, Dávila G, González V (2014) Narrow host range bacteriophages that infect Rhizobium etli associate with distinct genomic types. Appl Environ Microbiol 80:446–454PubMed PubMedCentral CrossRef
    Semsey S, Papp I, Buzas Z, Patthy A, Orosz L, Papp PP (1999) Identification of site-specific recombination genes int and xis of the Rhizobium temperate phage 16-3. J Bacteriol 181:4185–4192PubMed PubMedCentral
    Semsey S, Blaha B, Köles K, Orosz L, Papp PP (2002) Site-specific integrative elements of rhizobiophage 16-3 can integrate into proline tRNA (CGG) genes in different bacterial genera. J Bacteriol 184:177–182PubMed PubMedCentral CrossRef
    Shu D, Guo PX (2003) Only one pRNA hexamer but multiple copies of the DNA-packaging protein gp16 are needed for the motor to package bacterial virus phi29 genomic DNA. Virology 309:108–113PubMed CrossRef
    Smith-Mungo L, Chan IT, Landy A (1994) Structure of the P22 att site. Conservation and divergence in the lambda motif of recombinogenic complexes. J Biol Chem 269:20798–20805PubMed
    Sváb Z, Kondorosi Á, Orosz L (1978) Specialized transduction of a cystein marker by Rhizobium meliloti phage 16-3. J Gen Microbiol 106:321–327CrossRef
    Swinton D, Hattman S, Benzinger R, Buchanan-Wollaston V, Beringer JE (1985) Replacement of the deoxycytidine residues in Rhizobium bacteriophage RL38JI DNA. FEBS Lett 184:294–298PubMed CrossRef
    Szende K, Ördögh F (1960) Die Lysogenie von Rhizobium meliloti. Naturwissenschaften 47:404–405CrossRef
    Tamura K, Peterson D, Peterson N, Stecher G, Nei M, Kumar S (2011) MEGA5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Mol Biol Evol 28:2731–2739PubMed PubMedCentral CrossRef
    Uchiumi T, Abe M, Higashi S (1998) Integration of the temperate phage phi U into the putative tRNA gene on the chromosome of its host Rhizobium leguminosarum biovar trifolii. J Gen Appl Microbiol 44:93–99PubMed CrossRef
    Waldor MK, Friedman DI, Adhya SL (2005) Phages: their role in bacterial pathogenesis and biotechnology. ASM Press
    Willems A (2006) The taxonomy of rhizobia: an overview. Plant Soil 287:3–14CrossRef
    Williams KP (2002) Integration sites for genetic elements in prokaryotic tRNA and tmRNA genes: sublocation preference of integrase subfamilies. Nucl Acids Res 30:866–875PubMed PubMedCentral CrossRef
    Young JPW, Crossman LC, Johnston AWB et al (2006) The genome of Rhizobium leguminosarum has recognizable core and accessory components. Genome Biol 7:R34. doi:10.​1186/​gb-2006-7-4-r34 PubMed PubMedCentral CrossRef
  • 作者单位:Anupama P. Halmillawewa (1)
    Marcela Restrepo-Córdoba (1)
    Benjamin J. Perry (2)
    Christopher K. Yost (2)
    Michael F. Hynes (1)

    1. Department of Biological Sciences, University of Calgary, Calgary, AB, Canada
    2. Department of Biology, University of Regina, Regina, SK, Canada
  • 刊物类别:Biomedical and Life Sciences
  • 刊物主题:Life Sciences
    Cell Biology
    Biochemistry
    Microbial Genetics and Genomics
  • 出版者:Springer Berlin / Heidelberg
  • ISSN:1617-4623
文摘
Bacteriophages may play an important role in regulating population size and diversity of the root nodule symbiont Rhizobium leguminosarum, as well as participating in horizontal gene transfer. Although phages that infect this species have been isolated in the past, our knowledge of their molecular biology, and especially of genome composition, is extremely limited, and this lack of information impacts on the ability to assess phage population dynamics and limits potential agricultural applications of rhizobiophages. To help address this deficit in available sequence and biological information, the complete genome sequence of the Myoviridae temperate phage PPF1 that infects R. leguminosarum biovar viciae strain F1 was determined. The genome is 54,506 bp in length with an average G+C content of 61.9 %. The genome contains 94 putative open reading frames (ORFs) and 74.5 % of these predicted ORFs share homology at the protein level with previously reported sequences in the database. However, putative functions could only be assigned to 25.5 % (24 ORFs) of the predicted genes. PPF1 was capable of efficiently lysogenizing its rhizobial host R. leguminosarum F1. The site-specific recombination system of the phage targets an integration site that lies within a putative tRNA-Pro (CGG) gene in R. leguminosarum F1. Upon integration, the phage is capable of restoring the disrupted tRNA gene, owing to the 50 bp homologous sequence (att core region) it shares with its rhizobial host genome. Phage PPF1 is the first temperate phage infecting members of the genus Rhizobium for which a complete genome sequence, as well as other biological data such as the integration site, is available. Keywords Lysogeny Rhizobium Site-specific recombination Bacteriophage Myoviridae

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700