用户名: 密码: 验证码:
Biochemical retrosynthesis of 2-deoxyribonucleosides from glucose, acetaldehyde, and a nucleobase
详细信息    查看全文
文摘
2′-Deoxyribonucleosides are important as building blocks for the synthesis of antisense drugs, antiviral nucleosides, and 2′-deoxyribonucleotides for polymerase chain reaction. The microbial production of 2′-deoxyribonucleosides from simple materials, glucose, acetaldehyde, and a nucleobase, through the reverse reactions of 2′-deoxyribonucleoside degradation and the glycolytic pathway, was investigated. The glycolytic pathway of baker’s yeast yielded fructose 1,6-diphosphate from glucose using the energy of adenosine 5′-triphosphate generated from adenosine 5′-monophosphate through alcoholic fermentation with the yeast. Fructose 1,6-diphosphate was further transformed to 2-deoxyribose 5-phosphate in the presence of acetaldehyde by deoxyriboaldolase-expressing Escherichia coli cells via d-glyceraldehyde 3-phosphate. E. coli transformants expressing phosphopentomutase and nucleoside phosphorylase produced 2′-deoxyribonucleosides from 2-deoxyribose 5-phosphate and a nucleobase via 2-deoxyribose 1-phosphate through the reverse reactions of 2′-deoxyribonucleoside degradation. Coupling of the glycolytic pathway and deoxyriboaldolase-catalyzing reaction efficiently supplied 2-deoxyribose 5-phosphate, which is a key intermediate for 2′-deoxyribonucleoside synthesis. 2′-Deoxyinosine (9.9 mM) was produced from glucose, acetaldehyde, and adenine through three-step reactions via fructose 1,6-diphosphate and then 2-deoxyribose 5-phosphate, the molar yield as to glucose being 17.8%.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700