用户名: 密码: 验证码:
Seasonal reversals in groundwater flow direction and its role in the recurrent Agwagune landslide problem: a geophysical and geological appraisal
详细信息    查看全文
  • 作者:Anthony E. Akpan ; Stephen E. Ekwok ; Ebong D. Ebong
  • 关键词:Landslide ; Floods ; Groundwater ; Hydraulic gradient ; Erosion ; Agwagune ; Nigeria
  • 刊名:Environmental Earth Sciences
  • 出版年:2016
  • 出版时间:March 2016
  • 年:2016
  • 卷:75
  • 期:5
  • 全文大小:2,954 KB
  • 参考文献:Abidin MHZ, Saad R, Ahmad F, Wijeyesekera DC, Baharuddin MFT (2014) Correlation analysis between field electrical resistivity value (ERV) and basic geotechnical properties (BGP). Soil Mech Found Eng 51(3):117–125CrossRef
    Adepelumi AA, Ako BD, Ajayi TR, Olorunfemi AO, Awoyemi MO, Falebita DE (2008) Integrated geophysical mapping of the Ifewara transcurrent fault system, Nigeria. J Afr Earth Sci 52:161–166CrossRef
    Afegbua KU, Abubakar YT, Akpan OU, Duncan D, Usifoh ES (2011) Towards an integrated seismic hazard monitoring in Nigeria using geophysical and geodetic techniques. Int J Phys Sci 6(28):6385–6393
    Aizebeokhai AP, Oyeyemi KD (2014) Application of geoelectrical resistivity imaging and VLF-EM for subsurface characterization in a sedimentary terrain, Southwestern Nigeria. Arab J Geosci. doi:10.​1007/​s12517-014-1482-z
    Ajakaiye DE, Daniyan MA, Ojo SB, Onuoha KM (1987) The July 28, 1984 southwestern Nigeria earthquake and its implications for the understanding of the tectonic structure of Nigeria. In: Wassef AM, Boud A, Vyskocil P, Recent Crustal movements in Africa. J. Geodynamics 7:205–214
    Akande SO, Viczián I (1995) Clay mineralogy, diagenesis, paleothermometry and hydrocarbon potentials of Cretaceous shales in the southern Benue Trough, Nigeria. Geol Carpath Ser Clays 4(2):55–65
    Akpan AE, Ilori B, Essien, NU (2015) Geophysical investigation of Obot Ekpo landslide site, Cross River State, Nigeria. J Afr Earth Sci 109:154–167CrossRef
    Akpan OU, Yakubu TA (2010) A review of earthquake occurrences and observations in Nigeria. Earthq Sci 23(3):289–294CrossRef
    Akpan AE, George NJ, George AM (2009) Geophysical investigation of some prominent gully erosion sites in Calabar, southeastern Nigeria and its implications to hazard prevention. Disaster Adv 2(3):46–50
    Akpan AE, Ebong, ED, Ekwok, SE (2014) Assessment of the state of soils, shallow sediments and groundwater salinity in Abi, Cross River State, Nigeria. Environ Earth Sci. doi:10.​1007/​s12665-015-4014-6
    Akpan AE, Ugbaja AN, George NJ (2013) Integrated geophysical, geochemical and hydrogeological investigation of shallow groundwater resources in parts of the Ikom-Mamfe Embayment and the adjoining areas in Cross River State, Nigeria. J Environ Earth Sci 70(3):1435–1456CrossRef
    Ambraseys NN, Adams RD (1986) Seismicity of West Africa. Ann Geophys 4B(6):679–702
    Anderson MP, Munter JA (1981) Seasonal reversals of groundwater flow around lakes and the relevance to stagnation points and lake budgets. Water Resour Res 17(4):1139–1150CrossRef
    Arango-Galván C, De la Torre-González B, Chávez-Segura RE, Tejero-Andrade A, Cifuentes-Nava G, Hernández-Quintero E (2011) Structural pattern of subsidence in an urban area of the southeastern Mexico Basin inferred from electrical resistivity tomography. Geofís Int 50(4):401–409
    Benkhelil J (1982) Benue trough and Benue chain. Geol Mag Niger 119:115–168
    Bogoslovsky VA, Ogilvy RD (1977) Geophysical Methods for the investigation of Landslides. Geophysics 42(3):562–571CrossRef
    Braide SP (1987) Clay minerals burial diagenesis: a case study from the Calabar Flank of the Niger Delta. J Afr Earth Sc 6(2):181–186
    Braide SP, Huff WD (1986) Clay mineral variation in Tertiary sediments from the eastern flank of the Niger Delta. Clay Miner 21:211–224CrossRef
    Brunetti MT, Peruccacci S, Rossi M, Luciani S, Valigi D, Guzzetti F (2010) Rainfall thresholds for the possible occurrence of landslides in Italy. Nat Hazards Earth Syst Sci 10:447–458CrossRef
    Chang P-Y, Chang S-K, Liu H-C, Wang SC (2011) Using integrated 2D and 3D resistivity imaging methods for illustrating the mud-fluid conduits of the wushanting mud volcanoes in southwestern Taiwan. Terr Atmos Ocean Sci 22(1):1–14CrossRef
    Chang P-Y, Chen C, Chang S-K, Wang T-B, Wang C-Y, Hsu S-K (2012) An investigation into the debris flow induced by Typhoon Morakot in the Siaolin Area, Southern Taiwan, using the electrical resistivity imaging method. Geophys J Int 188:1012–1024CrossRef
    Chau KT, Sze YL, Fung MK, Wong WY, Fong EL, Chan LCP (2004) Landslide hazard analysis for Hong Kong using landslide inventory and GIS. Comput Geosci 30:429–443CrossRef
    Chaudhari PR, Ahire DV, Ahire VD, Chkravarty M, Maity S (2013) Soil bulk density as related to soil texture, organic matter content and available total nutrients of coimbatore soil. Int J Sci Res Publ 3(2):1–8
    CRBDA (1982) Inventory of natural site conditions, soil slopes, hydrology, land use and vegetation throughout the area of operation of the authority. Technical Report 4, p 154
    Crosta G, di Prisco CD (1999) On slope instability induced by seepage erosion. Can Geotech J 36(6):1056–1073CrossRef
    Devito KJ, Waddington JM, Branfireun BA (1997) Flow reversals in peatlands influenced by local groundwater systems. Hydrol Process 11:103–110CrossRef
    DeVries JJ (1976) The groundwater outcrop-erosion model: evolution of the stream network in the Netherlands. J Hydrol 29:43–50CrossRef
    Dobrin MB, Savit CH (1988) Introduction to geophysical prospecting, 4th edn. New York, McGraw-Hill Book Company, pp 867
    Duran J (1999) Sands, powders, and grains: an introduction to the physics of granular materials. Springer, New York
    Ebong ED, Akpan AE, Onwuegbuche AA (2014) Estimation of geohydraulic parameters from fractured shale and sandstone aquifers of Abi (Nigeria) using electrical resistivity and hydrogeologic measurements. J Afr Earth Sc. doi:10.​1016/​j.​jafrearsci.​2014.​03.​026
    Edet AE, Worden RH (2009) Monitoring of physical parameters and evaluation of the chemical composition of river and groundwater in Calabar (southeastern Nigeria). Environ Monit Assess 157:243–258CrossRef
    Egboka BCE, Okpoko EI (1984) Gully erosion in the Agulu-Nanka region of Anambra State, Nigeria. Changes in African Hydrology and Water Resources (Proceedings of the Harare Symposium, July 1984). IAHS Publication No 144
    Ekwok SE (2012) Electrical resistivity investigation of Agwagune landslide site, Biase Local Government Area, Cross River State, Nigeria. Unpublished M.Sc. thesis, University of Calabar, Nigeria
    EM-DAT: The OFDA/CRED International Disaster Database. http://​www.​cred.​be/​emdat . Universite´ Catholique de Louvain.Brussels, Belgium. Assessed Sept 1, 2013
    Ero KA, Ekwueme BN (2009) Mineralization of pegmatites in parts of the Oban Massif, Southeastern Nigeria: a preliminary analysis. Chin J Geochem 28(2):146–153CrossRef
    Falcini F, Fagherazzi S, Jerolmack DJ (2012) Wave-supported sediment gravity flows currents: effects of fluid-induced pressure gradients and flow width spreading. Cont Shelf Res 33:37–50CrossRef
    Fikos I, Vargemezis G, Zlotnicki J, Puertollano JR, Alanis PB, Pigtain RC, Villacorte EU, Malipot GA, Sasai Y (2012) Electrical resistivity tomography study of Taal volcano hydrothermal system, Philippines. Bull Volcanol 74(8):1821–1831CrossRef
    Freeze RA, Cherry JA (1979) Groundwater. Englewood Cliffs, Prentice-Hall Inc, New Jersey, p 604
    Géminard J-C, Champougny L, Lidon P, Melo F (2012) Flexural fracturing of a cohesive granular layer. Phys Rev E 85(1):012301CrossRef
    Howard AD, McLane CF (1988) Erosion of cohesionless sediment by groundwater seepage. Water Resour Res 24(10):1659–1674CrossRef
    Igbokwe JI, Akinyede JOB, Dang BT, Alaga TMN, Ono MN, Nnodu VC, Anike LO (2008) Mapping and Monitoring of the Impact of Gully Erosion in Southeastern Nigeria with Satellite Remote Sensing and Geographic Information System. Int Arch Photogramm Remote Sens Spat Inf Sci XXXVII B8:865–871
    Inoubli N, Gouasmia M, Gasmi M, Mhamdi A, Dhia HB (2006) Integration of geological, hydrochemical and geophysical methods for prospecting thermal water resources: the case of the Hmeıma region (Central–Western Tunisia). J Afr Earth Sc 46:180–186CrossRef
    Iverson RM, Major JJ (2012) Rainfall, ground-water flow, and seasonal movement at Minor Creek landslide, northwestern California: physical interpretation of empirical relations. Geology 40(4):323–326CrossRef
    Jongmans D, Garambois S (2007) Geophysical investigation of landslides: a review. Bulletin Société Géologique de France 178(2):101–112CrossRef
    Kabir AS, Hossain D, Abdullah R (2011) 2-D electrical imaging in some geotechnical investigation of Madhupur clays, Bangladesh. J Geol Soc India 77(1):73–81CrossRef
    Kearey P, Brooks M (1991) An introduction to geophysical exploration. Blackwell Scientific Publications, London
    Keller GV, Frischknecht FC (1966) Electrical methods in geophysical prospecting. Pergamon Press, Oxford
    Kuria ZN, Woldai T, van der Meer FD, Barongo JO (2010) Active fault segments as potential earthquake sources: inferences from integrated geophysical mapping of the Magadi fault system, southern Kenya Rift. J Afr Earth Sc 57(4):345–359CrossRef
    Langer CJ, Bonilla MG, Bollinger GA (1987) Aftershocks and surface faulting associated with the intraplate Guinea, West Africa, earthquake of 22 December 1983. Bull Seismol Soc Am 77:1579–1601
    Lobkovsky AE, Jensen B, Kudrolli A, Rothman DH (2004) Threshold phenomena in erosion driven by subsurface flow. J Geophys Res. doi:10.​1029/​2004JF000172
    Loke MH (1999) Electrical imaging surveys for environmental and engineering studies: a practical guide to 2-D and 3-D surveys. www.​terraplus.​com . Accessed Dec 30 2014
    Loke MH, Barker RD (1996) Rapid least-squares inversion of apparent resistivity pseudosections using a quasi-Newton method. Geophys Prospect 44:131–152CrossRef
    Morgan RPC (2005) Soil erosion and conservation, 3rd edn. Blackwell Publishing Ltd, Oxford
    Murthy KSR, Subrahmanyam V, Subrahmanyam AS, Murthy GPS, Sarma KVLNS (2010) Land–ocean tectonics (LOTs) and the associated seismic hazard over the Eastern Continental Margin of India (ECMI). J Nat Hazards. doi:10.​1007/​s11069-010-9523-8
    Obrike SE, Onyeobi TUS, Anudu GK, Osadebe CC (2012) Compositional Characteristics and industrial assessment of the Asu River group shale in Mpu Area, Southeastern Nigeria. J Mining Geol 48(2):117–126
    Odigi MI, Amajor LC (2009) Geochemical characterization of cretaceous sandstones from the Southern Benue Trough, Nigeria. Chin J Geochem 28:044–054CrossRef
    Odoma AN, Obaje NG, Omada JI, Idakwo SO, Erbacher J (2013) Paleoclimate reconstruction during Mamu Formation (Cretaceous) based on clay mineral distributions. IOSR J Appl Geol Geophys 1(5):40–46CrossRef
    Offiong OE, Edet AE (1998) Surface water quality evaluation in Odukpani Calabar Flank, South-Eastern Nigeria. Environ Geol 36(3–4):343–348CrossRef
    Okoyeh EI, Akpan AE, Egboka BCE, Okeke HI (2013) An assessment of the influences of surface and subsurface water level dynamics in the development of gullies in Anambra State, Southeastern Nigeria. Earth Interact 18:1–24CrossRef
    Orellana E, Mooney AM (1966) Master curve and tables for vertical electrical sounding over layered structures. Interciencia, Escuela
    Osagie EO (2008) Seismic activity in Nigeria. Pac J Sci Technol 9(2):546–551
    Perrone A, Iannuzzi Lapenna V, Lorenzo P, Piscitelli S, Rizzo E, Sdao F (2004) High-resolution electrical imaging of the Varco d’Izzo earthflow (southern Italy). J Appl Geophys 56:17–29CrossRef
    Pimentel E (2003) Swelling behaviour of sedimentary rocks under consideration of micromechanical aspects and its consequences on structure design. Geotechnical measurements and modelling, Swets & Zeitlinger, Lisse 367–374
    Reijers TJA, Petters SW (1987) Depositional environments and diagenesis of Albian carbonates on the Calabar Flank, S. E. Nigeria. J Petrel Geol 10(3):283–293CrossRef
    Rockwell DL (2002) The influence of groundwater on surface flow erosion processes during a rainstorm. Earth Surf Proc Land 27(5):495–514CrossRef
    Rogers JD, Olshansky R, Rogers RB (1993) Damage to foundations from expansive soils. Claims People 3(4):1–4
    Sacks LA, Herman JS, Konikow LF, Vela AL (1992) Seasonal dynamics of groundwater-lake interactions at Doñana National Park, Spain. J Hydrol 136(1–4):123–154CrossRef
    Saki E, Deliboran A, Tutar E (2011) Bulk density of Harran plain soils in relation to other soil properties. Afr J Agric Res 6(7):1750–1757
    Sasaki Y (1992) Resolution of resistivity tomography inferred from numerical simulation. Geophys Prospect 54:453–464CrossRef
    Sass O, Bell R, Glade T (2008) Comparison of GPR 2D-resistivity and traditional techniques for the subsurface exploration of the Öschingen landslide, Swabian Alb (Germany). Geomorphology 93:89–103CrossRef
    Sheridan RE, Houtz RE, Drake CL, Ewing M (1969) Structure of continental margin off Sierra Leone, West Africa. J Geophys Res 74(10):2512–2530CrossRef
    Slater L, Binley A, Versteeg R, Cassiani G, Birken R, Sandberg S (2002) A 3D ERT study of solute transport in a large experimental tank. J Appl Geophys 49:211–229CrossRef
    Storz H, Storz W, Jacobs F (2000) Electrical resistivity tomography to investigate geological structures of the earth’s upper crust. Geophys Prospect 48(3):455–471CrossRef
    Telford WM, Gildart LP, Sheriff RE (1990) Applied geophysics, 2nd edn. Cambridge University Press, CambridgeCrossRef
    Vender Velpen BPA (1988) A computer processing package for D.C. resistivity interpretation for an IBM compatibles, ITC Journal 4, The Netherlands
    Wentworth CK (1922) A scale of grade and class terms for classic sediments. J Geol 30:377–392CrossRef
    Wetzel K-F, Sass O, von Restorff C (2006) Mass movement processes in unconsolidated Pleistocene sediments - a multimethod investigation at the “Hochgraben” (Jenbach/Upper Bavaria). Erdkunde 60:246–260CrossRef
    Wilkinson PB, Meldrum PI, Kuras O, Chambers JE, Holyoake SJ, Ogilvy RD (2010) High-resolution electrical resistivity tomography monitoring of a tracer test in a confined aquifer. J Appl Geophys 70:268–276CrossRef
    Wu Y (2003) Mechanism analysis of hazards caused by the interaction between groundwater and geo-environment. Environ Geol 44(7):811–819CrossRef
    Younger PL (2007) Groundwater in the environment: an introduction. Blackwell Publishing, USA, p 318
    Yuan ZG, Wang HT, Liu NP (2012) Numerical Simulation of Hydraulic Fracture Propagation Characteristics of Low Permeable Coal-Rock Mass. Adv Mat Res 482:1668–1671CrossRef
  • 作者单位:Anthony E. Akpan (1)
    Stephen E. Ekwok (1)
    Ebong D. Ebong (1)

    1. Applied Geophysics Programme, University of Calabar, Calabar, Cross River State, Nigeria
  • 刊物类别:Earth and Environmental Science
  • 刊物主题:None Assigned
  • 出版者:Springer Berlin Heidelberg
  • ISSN:1866-6299
文摘
The character of the shallow subsurface materials in the landslide and flood-prone Agwagune Community has been investigated using geophysical (electrical resistivity), geological and geotechnical techniques. Arising from the continuous suffering of the people in the affected areas, high occurrence rate and the desire to characterise the surficial materials, two dimensional resistivity tomography, vertical electrical sounding, soil sampling and hydrodynamic monitoring were conducted. Results show that the surficial materials are dominated by two main lithologic units: thin sandy materials with resistivity >30 Ωm and thick argillaceous materials with resistivity <30 Ωm. Particle size analyses confirm the dominance of argillaceous: silty-clay (56.2 %) and very fine (55.3 %) over arenaceous (9.2 %) materials. Bulk and particle densities of the surficial materials vary from 0.99 × 103 to 1.40 × 103 and 2.06 × 103 to 2.50 × 103 kg/m3, respectively; pH, EC and porosity range from 4.46 to 6.68, 8.0 to 23.0 mS/cm and 34.0 to 60.0 %, respectively. Atterberg Limits vary from 15.82 to 38.70 for liquid limit and 18.10–24.00 for plastic limit. Plasticity index varies from 11.92 to 15.70 %. Shallow groundwater in the coastal area is always in hydrodynamic equilibrium with water inside the Cross and Efefa Rivers and pond fields. To sustain this equilibrium condition, excess water inside the Cross River is usually discharged into Efefa River through both surface and underground flow processes. However, when water inside the Cross River dries up, a new hydraulic gradient, which distorts the existing equilibrium, is formed. This results in the reversal of groundwater flow direction. Continuous flow of groundwater into the Cross River channel (CRC) without any corresponding recharge results in the formation of voids, which gravitational force, forces to collapse. The collapsed materials usually roll toward the CRC, resulting in landslides. Models illustrating the main cause of the repeated landslide problem and suggested measures to minimise its occurrence rate have been included.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700