用户名: 密码: 验证码:
Description of the geometry of crystals with a hexagonal close-packed structure based on pair interaction potentials
详细信息    查看全文
  • 作者:E. A. Podolskaya (1)
    A. M. Krivtsov (1) katepodolskaya@gmail.com
  • 刊名:Physics of the Solid State
  • 出版年:2012
  • 出版时间:July 2012
  • 年:2012
  • 卷:54
  • 期:7
  • 页码:1408-1416
  • 全文大小:318.2 KB
  • 参考文献:1. A. M. Krivtsov, Phys. Solid State 46(6), 1055 (2004). <Occurrence Type="Bibcode"><Handle>2004PhSS...46.1055K</Handle></Occurrence>
    2. A. M. Krivtsov, Deformation and Fracture of Solids with Microstructure (Fizmatlit, Moscow, 2007) [in Russian].
    3. B. D. Annin, S. N. Korobeinikov, and A. V. Babichev, Sib. Zh. Ind. Mat. 11(1), 3 (2008).
    4. A. Yu. Kuksin, G. E. Norman, V. V. Stegailov, and A. V. Yanilkin, J. Eng. Thermophys. 18(3), 197 (2009).
    5. J. A. Zimmerman, R. E. Jones, and J. A. Templeton, J. Comput. Phys. 229, 2364 (2010). <Occurrence Type="Bibcode"><Handle>2010JCoPh.229.2364Z</Handle></Occurrence>
    6. A. M. Krivtsov and N. F. Morozov, Phys. Solid State 44(12), 2260 (2002). <Occurrence Type="Bibcode"><Handle>2002PhSS...44.2260K</Handle></Occurrence>
    7. R. V. Gol’dshtein and A. V. Chentsov, Izv. Akad. Nauk, Mech. Tverd. Tela, No. 4, 57 (2005).
    8. A. M. Krivtsov, Elastic Properties of Monoatomic and Diatomic Crystals (St. Petersburg State Polytechnical University, St. Petersburg, 2009) [in Russian].
    9. I. E. Berinskii, N. G. Dvas, A. M. Krivtsov, et al., Theoretical Mechanics. Elastic Properties of Monoatomic and Diatomic Crystals, Ed. by A. M. Krivtsov (St. Petersburg State Polytechnical University, St. Petersburg, 2009) [in Russian].
    10. I. E. Berinskiy, A. M. Krivtsov, and A. M. Kudarova, in Proceedings of the XXXVI Summer School “Advanced Problems in Mechanics,“ St. Petersburg, Russia, July 6–10, 2008, p. 122.
    11. E. A. Ivanova, A. M. Krivtsov, and N. F. Morozov, Prikl. Mat. Mekh. 71(4), 595 (2007).
    12. D. M. Vasil’ev, Physical Crystallography (Metallurgiya, Moscow, 1981) [in Russian].
    13. M. S. Daw and M. I. Baskes, Phys. Rev. Lett. 50(17), 1285 (1983). <Occurrence Type="Bibcode"><Handle>1983PhRvL..50.1285D</Handle></Occurrence>
    14. R. Pasianot and E. J. Savino, Phys. Rev. B: Condens. Matter 45(22), 12704 (1992). <Occurrence Type="Bibcode"><Handle>1992PhRvB..4512704P</Handle></Occurrence>
    15. M. I. Baskes and R. A. Johnson, Modell. Simul. Mater. Sci. Eng. 2, 147 (1994). <Occurrence Type="Bibcode"><Handle>1994MSMSE...2..147B</Handle></Occurrence>
    16. W. Hu, B. Zhang, B. Huang, F. Gao, and D. J. Bacon J. Phys.: Condens. Matter 13(6), 1193 (2001). <Occurrence Type="Bibcode"><Handle>2001JPCM...13.1193H</Handle></Occurrence>
    17. Y.-M. Kim, B.-J. Lee, and M. I. Baskes, Phys. Rev. B: Condens. Matter 74 (1), 014101 (2006). <Occurrence Type="Bibcode"><Handle>2006PhRvB..74a4101K</Handle></Occurrence>
    18. M. A. Baranov, E. A. Dubov, I. V. Dyatlova, and E. V. Chernykh, Phys. Solid State 46(2), 213 (2004). <Occurrence Type="Bibcode"><Handle>2004PhSS...46..213B</Handle></Occurrence>
    19. A. M. Krivtsov and E. A. Podolskaya, Izv. Akad. Nauk, Mekh. Tverd. Tela, No. 3, 77 (2010).
    20. V. A. Lagunov and A. B. Sinani, Phys. Solid State 40(10), 1742 (1998). <Occurrence Type="Bibcode"><Handle>1998PhSS...40.1742L</Handle></Occurrence>
    21. N. J. Wagner, B. L. Holian, and A. F. Voter, Phys. Rev. A: At., Mol., Opt. Phys. 45(12), 8457 (1992). <Occurrence Type="Bibcode"><Handle>1992PhRvA..45.8457W</Handle></Occurrence>
    22. WebElements: the Periodic Table on the www (http://www.webelements.com/) (Copyright 1993–2010, Mark Winter, The University of Sheffield and WebElements, United Kingdom).
    23. Handbook of Physical Quantities, Ed. by I. S. Grigoriev and E. Z. Meilikhov (Energoatomizdat, Moscow, 1991; CRC Press, Boca Raton, Florida, United States, 1997).
    24. A. I. Lurie, Nonlinear Theory of Elasticity (Nauka, Moscow, 1980; North-Holland, Amsterdam, 1990).
    25. F. Milstein, Phys. Rev. B: Solid State 4(3), 1130 (1971). <Occurrence Type="Bibcode"><Handle>1971PhRvB...3.1130M</Handle></Occurrence>
    26. G. Simmons and H. F. Wang, Single Crystal Elastic Constants and Calculated Aggregate Properties: A Handbook (Massachusetts Institute of Technology, Cambridge, Massachusetts, United States, 1971).
    27. E. A. Brandes and G. B. Brook, Smithells Metals Reference Book (Butterworth-Heinemann, Oxford, 1992).
    28. N. G. Dvas, in Proceedings of the XXXIV Summer School “Advanced Problems in Mechanics,” St. Petersburg, Russia, June 25–July 1, 2006, p. 138.
  • 作者单位:1. Institute of Problems in Mechanical Engineering, Russian Academy of Sciences, Bolshoj pr. 61, St. Petersburg, 199178 Russia
  • ISSN:1090-6460
文摘
The pair force interaction potential that allows one to describe a deviation from spherical symmetry, which is typical for hexagonal close-packed structures, is constructed using the “spherically symmetric” Mie potential that depends only on the interatomic distance. The parameters of the considered potential, which ensure the stability of hexagonal close-packed lattices, are obtained for a wide range of metals, namely, beryllium, gadolinium, hafnium, holmium, dysprosium, yttrium, cobalt, lutetium, magnesium, osmium, rhenium, ruthenium, scandium, thallium, terbium, technetium, titanium, thulium, cerium, zirconium, and erbium. It is shown that for this pair interaction potential the hexagonal close-packed structure is energetically more favorable than the face-centered cubic structure. The proposed potential can be used to perform computational experiments and analytical investigations.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700