用户名: 密码: 验证码:
Application of chemometric analysis to infrared spectroscopy for the identification of wood origin
详细信息    查看全文
  • 作者:Ara Carballo-Meilán ; Adrian M. Goodman ; Mark G. Baron ; Jose Gonzalez-Rodriguez
  • 关键词:Plant taxonomy classification ; Infrared spectroscopy ; Multivariate analysis ; Wood ; Angiosperm ; Gymnosperm
  • 刊名:Cellulose
  • 出版年:2016
  • 出版时间:February 2016
  • 年:2016
  • 卷:23
  • 期:1
  • 页码:901-913
  • 全文大小:655 KB
  • 参考文献:Åkerholm M, Salmén L, Salme L (2001) Interactions between wood polymers studied by dynamic FT-IR spectroscopy. Polymer 42(3):963–969. doi:10.​1016/​S0032-3861(00)00434-1 CrossRef
    Anchukaitis KJ, Evans MN, Lange T, Smith DR, Leavitt SW, Schrag DP (2008) Consequences of a rapid cellulose extraction technique for oxygen isotope and radiocarbon analyses. Anal Chem 80(6):2035–2041. doi:10.​1016/​j.​gca.​2004.​01.​006.​Analytical CrossRef
    Barnett JR, Jeronimidis G (2003) Wood quality and its biological basis. Blackwell, Oxford, p 226
    Bjarnestad S, Dahlman O (2002) Chemical compositions of hardwood and softwood pulps employing photoacoustic fourier transform infrared spectroscopy in combination with partial least-squares analysis. Anal Chem 74(22):5851–5858. doi:10.​1021/​ac025926z CrossRef
    Carballo-Meilan A, Goodman AM, Baron MG, Gonzalez-Rodriguez J (2014) A specific case in the classification of woods by FTIR and chemometric: discrimination of Fagales from Malpighiales. Cellulose 21(1):261–273. doi:10.​1007/​s10570-013-0093-2 CrossRef
    Chase MW, Reveal JL (2009) A phylogenetic classification of the land plants to accompany APG III. Bot J Linn Soc 161(2):122–127. doi:10.​1111/​j.​1095-8339.​2009.​01002.​x CrossRef
    Chen J, Liu C, Chen Y, Chen Y, Chang PR (2008) Structural characterization and properties of starch/konjac glucomannan blend films. Carbohydr Polym 74(4):946–952. doi:10.​1016/​j.​carbpol.​2008.​05.​021 CrossRef
    Chernick MR (2011) Bootstrap methods: a guide for practitioners and researchers. Wiley, Hoboken, NJ, p 400
    Christenhusz MJM, Reveal JL, Farjon A, Gardner MF, Mill RR, Chase MW (2011) A new classification and linear sequence of extant gymnosperms. Phytotaxa 19:55–70. doi:10.​1093/​pcp/​pcs187 CrossRef
    Coates J (2000) Interpretation of infrared spectra, a practical approach. Encycl Anal Chem 10815–10837
    Ek M, Gellerstedt G, Henriksson G (2009) Wood chemistry and wood biotechnology. Walter de Gruyter, Berlin, p 308CrossRef
    Erdtman H (1963) Some aspects of chemotaxonomy. Chem Plant Taxon 89–125
    Gidman E, Goodacre R, Emmett B, Smith AR, Gwynn-Jones D (2003) Investigating plant–plant interference by metabolic fingerprinting. Phytochemistry 63(6):705–710. doi:10.​1016/​S0031-9422(03)00288-7 CrossRef
    Gorgulu ST, Dogan M, Severcan F (2007) The characterization and differentiation of higher plants by Fourier transform infrared spectroscopy. Appl Spectrosc 61(3):300–308. doi:10.​1366/​0003702077802209​03 CrossRef
    Hobro A, Kuligowski J, Döll M, Lendl B (2010) Differentiation of walnut wood species and steam treatment using ATR-FTIR and partial least squares discriminant analysis (PLS-DA). Anal Bioanal Chem 398(6):2713–2722. doi:10.​1007/​s00216-010-4199-1 CrossRef
    Huang A, Zhou Q, Liu J, Fei B, Sun S (2008) Distinction of three wood species by Fourier transform infrared spectroscopy and two-dimensional correlation IR spectroscopy. J Mol Struct 883–884:160–166. doi:10.​1016/​j.​molstruc.​2007.​11.​061 CrossRef
    Kacuráková M, Kauráková M, Capek P, Sasinkova V, Wellner N, Ebringerova A, Kac M (2000) FT-IR study of plant cell wall model compounds: pectic polysaccharides and hemicelluloses. Carbohydr Polym 43(2):195–203. doi:10.​1016/​S0144-8617(00)00151-X CrossRef
    Kim SW, Ban SH, Chung HJ, Cho S, Choi PS, Yoo OJ, Liu JR (2004) Taxonomic discrimination of flowering plants by multivariate analysis of Fourier transform infrared spectroscopy data. Plant Cell Rep 23(4):246–250. doi:10.​1007/​s00299-004-0811-1 CrossRef
    Klecka WR (1980) Discriminant analysis. Sage Publications, Beverly Hills, CA, p 71
    Kubo S, Kadla JF (2005) Hydrogen bonding in lignin: a Fourier transform infrared model compound study. Biomacromolecules. 6(5):2815–2821. doi:10.​1021/​bm050288q CrossRef
    Larkin P (2011) Infrared and Raman spectroscopy: principles and spectral interpretation. Elsevier, Amsterdam, Boston, p 230
    Liang C, Marchessault R (1959) Infrared spectra of crystalline polysaccharides. II. Native celluloses in the region from 640 to 1700 cm. J Polym Sci 39(135):269–278. doi:10.​1002/​pol.​1959.​1203913521 CrossRef
    Marchessault RH (1962) Application of infra-red spectroscopy to cellulose and wood polysaccharides. Pure Appl Chem 5(1–2):107–130. doi:10.​1351/​pac196205010107
    Marchessault RH, Liang CY (1962) The infrared spectra of crystalline polysaccharides. VIII. Xylans. J Polym Sci 59(168):357–378. doi:10.​1002/​pol.​1962.​1205916813 CrossRef
    Marchessault RH, Pearson FG, Liang CY (1960) Infrared spectra of crystalline polysaccharides. I. Hydrogen bonds in native celluloses. Biochim Biophys Acta 45:499–507CrossRef
    Martin JW (2007) Concise encyclopedia of the structure of materials. Elsevier, Amsterdam; Boston, p 512
    McCann MC, Bush M, Milioni D, Sado P, Stacey NJ, Catchpole G, Defernez M, Carpita NC, Hofte H, Ulvskov P, Wilson RH, Roberts K (2001) Approaches to understanding the functional architecture of the plant cell wall. Phytochemistry 57(6):811–821. doi:10.​1016/​S0031-9422(01)00144-3 CrossRef
    Mohebby B (2005) Attenuated total reflection infrared spectroscopy of white-rot decayed beech wood. Int Biodeterior Biodegradation 55(4):247–251. doi:10.​1016/​j.​ibiod.​2005.​01.​003 CrossRef
    Mohebby B (2008) Application of ATR infrared spectroscopy in wood acetylation. J Agric Sci 10:253–259
    Muruganantham S, Anbalagan G, Ramamurthy N (2009) FT-IR and SEM-EDS comparative analysis of medicinal plants, Eclipta Alba Hassk and Eclipta Prostrata Linn. Rom J Biophys 19(4):285–294
    Obst JR (1982) Guaiacyl and syringyl lignin composition in hardwood cell components. Holzforschung 36(3):143–152. doi:10.​1515/​hfsg.​1982.​36.​3.​143 CrossRef
    Pandey KK (1999) A study of chemical structure of soft and hardwood and wood polymers by FTIR spectroscopy. J Appl Polym Sci 71(12):1969–1975. doi:10.​1002/​(SICI)1097-4628(19990321)71:​12<1969:​AID-APP6>3.​3.​CO;2-4 CrossRef
    Pandey KK, Vuorinen T (2008) Comparative study of photodegradation of wood by a UV laser and a xenon light source. Polym Degrad Stab 93(12):2138–2146. doi:10.​1016/​j.​polymdegradstab.​2008.​08.​013 CrossRef
    Pavia DL, Lampman GM, Kriz GS, Vyvyan JA (2009) Introduction to spectroscopy. Brooks/Cole, Cengage Learning, Belmont, CA, p 727
    Rakotomalala R (2005) TANAGRA: un logiciel gratuit pour l’enseignement et la recherche, pp. in Actes de EGC’2005, RNTI-E-3, vol 2, pp. 697–702
    Rana R, Sciences F (2008) Correlation between anatomical/chemical wood properties and genetic markers as a means of wood certification. Nieders\”achsische Staats-und Universit\”atsbibliothek Göttingen. doi: 978-3-9811503-2-2
    Rana R, Langenfeld-Heyser R, Finkeldey R, Polle A (2009) FTIR spectroscopy, chemical and histochemical characterisation of wood and lignin of five tropical timber wood species of the family of Dipterocarpaceae. Wood Sci Technol 44(2):225–242. doi:10.​1007/​s00226-009-0281-2 CrossRef
    Revanappa SB, Nandini CD, Salimath PV (2010) Structural characterisation of pentosans from hemicellulose B of wheat varieties with varying chapati-making quality. Food Chem 119(1):27–33. doi:10.​1016/​j.​foodchem.​2009.​04.​064 CrossRef
    Rhoads CA, Painter P, Given P (1987) FTIR studies of the contributions of plant polymers to coal formation. Int J Coal Geol 8(1–2):69–83. doi:10.​1016/​0166-5162(87)90023-1 CrossRef
    Sekkal M, Dincq V, Legrand P, Huvenne J (1995) Investigation of the glycosidic linkages in several oligosaccharides using FT-IR and FT Raman spectroscopies. J Mol Struct 349(95):349–352CrossRef
    Shen JB, Lu HF, Peng QF, Zheng JF, Tian YM (2008) FTIR spectra of Camellia sect. Oleifera, sect. Paracamellia, and sect. Camellia (Theaceae) with reference to their taxonomic significance. J Syst Evol 46(2):194–204. doi:10.​3724/​SP.​J.​1002.​2008.​07125
    Silverstein RM, Webster FX, Kiemle D (2005) Spectrometric identification of organic compounds. Wiley, Hoboken, NJ, p 502
    Sjostrom E (1981) Wood chemistry: fundamentals and applications. Academic Press, New York, p 293
    Stewart D, Wilson HM, Hendra PJ, Morrison IM (1995) Fourier-transform infrared and Raman spectroscopic study of biochemical and chemical treatments of oak wood (Quercus rubra) and barley (Hordeum vulgare) straw. J Agric Food Chem 43(8):2219–2225. doi:10.​1021/​jf00056a047 CrossRef
    Sudiyani Y, Tsujiyama S, Imamura Y, Takahashi M, Minato K, Kajita H, Sci W (1999) Chemical characteristics of surfaces of hardwood and softwood deteriorated by weathering. J Wood Sci 45(4):348–353CrossRef
    Takayama M (1997) Fourier transform Raman assignment of guaiacyl and syringyl marker bands for lignin determination. Spectrochim Acta A Mol Biomol Spectrosc 53(10):1621–1628. doi:10.​1016/​S1386-1425(97)00100-5 CrossRef
    The Angiosperm Phylogeny Group (2009) An update of the Angiosperm Phylogeny Group classification for the orders and families of flowering plants: APG III. Bot J Linn Soc 161:105–121. doi:10.​1111/​j.​1095-8339.​2009.​00996.​x CrossRef
    Wang S, Wang K, Liu Q, Gu Y, Luo Z, Cen K, Fransson T (2009) Comparison of the pyrolysis behavior of lignins from different tree species. Biotechnol Adv 27(5):562–567. doi:10.​1016/​j.​biotechadv.​2009.​04.​010 CrossRef
    Zugenmaier P (2007) Crystalline cellulose and derivatives: characterization and structures. Springer, Berlin, New York, p 285
  • 作者单位:Ara Carballo-Meilán (1)
    Adrian M. Goodman (2)
    Mark G. Baron (3)
    Jose Gonzalez-Rodriguez (3)

    1. Department of Chemical Engineering, University of Loughborough, Loughborough, LE11 3TU, UK
    2. School of Life Sciences, University of Lincoln, Brayford Pool, Lincoln, LN6 7TS, UK
    3. School of Chemistry, University of Lincoln, Brayford Pool, Lincoln, LN6 7TS, UK
  • 刊物类别:Chemistry and Materials Science
  • 刊物主题:Chemistry
    Bioorganic Chemistry
    Physical Chemistry
    Organic Chemistry
    Polymer Sciences
  • 出版者:Springer Netherlands
  • ISSN:1572-882X
文摘
In this study, the chemical characteristics of wood are used for plant taxonomic classification based on the current Angiosperm Phylogeny Group classification (APG III System) for the division, class and subclass of woody plants. Infrared spectra contain information about the molecular structure and intermolecular interactions among the components in wood, but the understanding of this information requires multivariate techniques for the analysis of highly dense data sets. This article is written with the purposes of specifying the chemical differences among taxonomic groups and predicting the taxa of unknown samples with a mathematical model. Principal component analysis, t test, stepwise discriminant analysis and linear discriminant analysis were some of the multivariate techniques chosen. A procedure to determine the division, class, subclass and order of unknown samples was built with promising implications for future applications of Fourier transform infrared spectroscopy in wood taxonomy classification. Keywords Plant taxonomy classification Infrared spectroscopy Multivariate analysis Wood Angiosperm Gymnosperm

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700