用户名: 密码: 验证码:
Quantifying effects of primary parameters on adsorption–desorption of atrazine in soils
详细信息    查看全文
  • 作者:Yufen Huang (1)
    Zhongzhen Liu (1)
    Yan He (2)
    Fang Zeng (1)
    Ronghui Wang (1)
  • 关键词:Adsorption and desorption ; Atrazine ; Hysteretic effect ; The content ratio of clay to total organic carbon (RCO) ; Soil characteristics
  • 刊名:Journal of Soils and Sediments
  • 出版年:2013
  • 出版时间:January 2013
  • 年:2013
  • 卷:13
  • 期:1
  • 页码:82-93
  • 全文大小:326KB
  • 参考文献:1. Altfelder S, Streck T, Richter J (2000) Nonsingular sorption of organic compounds in soil: the role of slow kinetics. J Environ Qual 29:917-25 CrossRef
    2. Amaud B, Richard C, Michel S (2005) A comparison of five pesticides adsorption and desorption processes in thirteen contrasting field soils. Chemosphere 61:668-76 CrossRef
    3. Anagu I, Ingwersen J, Drori Y, Chefetz B, Streck T (2011) Modeling concentration-dependent sorption–desorption hysteresis of atrazine in a sandy loam soil. J Environ Qual 40:538-47 CrossRef
    4. Armstrong DE, Chesters G (1968) Adsorption catalyzed chemical hydrolysis of atrazine. Environ Sci Technol 2:683-89 CrossRef
    5. Barriuso E, Laird DA, Koskinen WC, Dowdy RH (1994) Atrazine desorption from smectites. Soil Sci Soc Am 58:1632-638 CrossRef
    6. Barriuso E, Koskinen WC, Sadowsky MJ (2004) Solvent extraction characterization of bioavailability of atrazine residues in soils. J Agric Food Chem 52:6552-556 CrossRef
    7. Bhandari A, Novak J, Berry D (1996) Binding of 4-monochlorophenol to soil. Environ Sci Technol 30(7):2305-311 CrossRef
    8. Borggaard OK, Streibig JC (1988) Atrazine adsorption by some soil samples in relation to their constituents. Acta Agric Scandinavica 38:293-01 CrossRef
    9. Botelho RG, Santos JBD, Fernandes KM, Neves CA (2011) Effects of atrazine and picloram on grass carp: acute toxicity and histological assessment. Toxicol Environ Chem 94:121-27 CrossRef
    10. Carrizosa MJ, Koskinen WC, Hermosin MC, Cornejo J (2001) Dicamba adsorption–desorption on organoclays. Appl Clay Sci 18:223-31 CrossRef
    11. Chefetz B, Bilkis YI, Polubesove T (2004) Sorption–desorption behavior of triazine and phenylurea herbicides in Kishon river sediments. Water Research 38:4383-394 CrossRef
    12. Chen JS, Chiu CY (2003) Characterization of soil organic matter in different particle-size fractions in humid subalpine soils by CP/MAS 13C-NMR. Geoderma 117:129-41 CrossRef
    13. Clausen L, Fabricius I, Madsen L (2001) Adsorption of pesticides onto quartz, calcite, kaolinite, and α-Alumina. J Environ Qual 30:846-57 CrossRef
    14. Clay SA, Koskinen WC (1990a) Characterization of alachlor and atrazine desorption from soils. Weed Science 38:74-0
    15. Clay SA, Koskinen WC (1990b) Adsorption and desorption of atrazine, hydroxyatrazine, and / S-glutathione atrazine on two soils. Weed Science 38:262-66
    16. Cox L, Koskinen WC, Yen PY (1997) Sorption–desorption of imidacloprid and its metabolites in soil. J Agric Food Chem 45:1468-472 CrossRef
    17. Deng JC, Jiang X, Wang F, Lu X, Yu GF, Yan DY, Bian YR (2005) Hysteretic characteristics of atrazine desorption from fluvo-aquic soil. Environ Sci 26(6):137-42
    18. Deng JC, Jiang X, Lu X, Yu GF, Wang F, Zhang B (2007) Atrazine adsorption behavior on a fluvo-aquic soil as influenced by contact periods. Pedosphere 17(6):786-91 CrossRef
    19. Dur JC, Gouy V, Calvet R, Belamie R, Chaplain V (1998) Influence of adsorption–desorption phenomena on pesticide runoff measured under controlled conditions. Comptes Rendus de I’Academie des Sciences-Series IIA-Earth Planetary Science 327(6):405-11 CrossRef
    20. Flores C, Morgante V, Gonzalez M et al (2009) Adsorption studies of the herbicide simazine in agricultural soils of the Aconcagua Valley, central Chile. Chemosphere 74:1544-549 CrossRef
    21. Gao HJ, Jiang X (2010) Effect of inintial concentration on adsorption–desorption characteristics and desorption hysteresis of hexachlorobenzene in soils. Pedosphere 20(1):104-10 CrossRef
    22. Hamaker JW, Thompson JM (1972) Adsorption of organic chemicals in the soil environment. Dedder, New York. pp 49-43
    23. Hayes BH, Collins A, Lee M et al (2002) Hermaphroditic, demasculinized frogs after exposure to the herbicide atrazine at low ecologically relevant doses. PNAS 99(8):5476-480 CrossRef
    24. He Y, Xu JM, Wang HZ, Ma ZH, Chen JQ (2006a) Detailed sorption isotherms of pentachlorophenol on soils and its correlation with soil properties. Environ Res 101(3):362-72 CrossRef
    25. He Y, Xu JM, Wang HZ, Zhang QC, Muhammad M (2006b) Potential contributions of soil minerals and organic matter to pentachlorophenol retention in soils. Chemosphere 65(3):497-05 CrossRef
    26. He Y, Liu ZZ, Zhang J, Wang HZ, Shi JC, Xu JM (2011) Can assessing for potential contribution of soil organic and inorganic components for butachlor sorption be improved? J Environ Qual 40:1705-713 CrossRef
    27. Hincapie M, Maldonado MI, Oller I et al (2005) Solar photocatalytic degradation and detoxification of EU priority substances. Catal Today 101:203-10 CrossRef
    28. Huang PM, Wang MK (1997) Formation chemistry and selected surface properties of iron oxides. Adv Geoecol 30:241-70
    29. Huang WL, Weber WJ (1997) A distributed reactivity model for sorption by soils and sediments. 10. Relationships between desorption, hysteresis, and the chemical characteristics of organic domains. Environ Sci Technol 31(9):2562-569 CrossRef
    30. Huang PM, Wang TSC, Wang MK, Wu MH, Hsu NW (1977) Retention of phenolic acids by noncrystalline hydroxyl-aluminum and -iron compounds and clay minerals of soils. Soil Sci 123:213-19 CrossRef
    31. Huang PM, Grover R, Mckercher RB (1984) Components and particle size fractions involved in atrazine adsorption by soils. Soil Sci 138:20-4 CrossRef
    32. Huang W, Hong Y, Weber WJ (1998) Hysteresis in the sorption and desorption of hydrophobic organic contaminants by soils and sediments. 1. A comparative analysis of experimental protocols. J Contam Hydrol 31:129-48 CrossRef
    33. Huang PM, Wang MK, Kampf N, Schulze DG (2002) Aluminum hydroxides. In: Dixon JB, Schulze DG (eds) Soil mineralogy with environmental applications. Soil Science Society of America, Madison, WI, pp 261-89
    34. Huang G, Li Q, Zhang X (2003) Adsorption and desorption of atrazine by three soils. Environ Contam Toxicol 71:655-61 CrossRef
    35. Huo LJ (2006) Experimental study on adsorption, degradation and leaching of atrazine and its metabolites in sandy loamy soil. Dissertation, China, pp 9-6
    36. Jenks BM, Roeth FW, Martin AR (1998) Influence of surface and subsurface soil properties on atrazine sorption and degradation. Weed Science 46:132-38
    37. Kwong NKKF, Huang PM (1979) Surface reactivity of aluminum hydroxides precipitated in the presence of low molecular weight organic acids. Soil Sci Soc Am J 43:1107-113 CrossRef
    38. Lesan HM, Bhandari A (2003) Atrazine sorption on surface soils: time-dependent phase distribution and apparent desorption hysteresis. Water Res 37(7):1644-654 CrossRef
    39. Liao M, Xie XM (2007) Adsorption of metsulfuron and bensulfuron on a cationic surfactant-modified paddy soil. Pedosphere 17(1):101-08 CrossRef
    40. Liu ZZ, He Y, Xu JM, Huang P, Jilani G (2008) The ratio of clay content to total organic carbon content is a useful parameter to predict adsorption of the herbicide butachlor in soils. Environ Pollut 152:163-71 CrossRef
    41. Ma LW, Southwick LM, Willis GH, Selim HM (1993) Hysteresis characteristic of atrazine adsorption–desorption by a Sharkey soil. Weed Science 41:627-33
    42. Mersie W, Seybold C (1996) Adsorption and desorption of atrazine, deethylatrazine, deisopropylatrazine, and hydroxyatrazine on levy wetland soil. J Agr Food Chem 44:1925-929 CrossRef
    43. Mudhoo A, Garg VK (2011) Sorption, transport and transformation of atrazine in soils, minerals and composts: a review. Pedosphere 21(1):11-5 CrossRef
    44. O’Connor GA, Wierenga PJ, Cheng HH, Doxtader KG (1980) Movement of 2,4,5-T through large soil columns. Soil Sci 130:157-62 CrossRef
    45. Oren A, Chefetz B (2005) Sorption–desorption behavior of polycyclic aromatic hydrocarbons in upstream and downstream river sediments. Chemosphere 61:19-9 CrossRef
    46. Palvostathis SG, Mathavan GN (1992) Desorption kinetic of selected volatile organic compounds from field contaminated soils. Environ Sci Technol 26:532-38 CrossRef
    47. Pusino A, Pinna MV, Gessa C (2004) Azimsulfuron sorption–desorption on soil [J]. J Agr Food Chem 52:3462-466 CrossRef
    48. Rayner JL, Fenton SE (2011) Atrazine: an environmental endocrine disruptor that alters mammary gland development and tumor susceptibility. Environ Breast Cancer 167-83
    49. Schiavon M (1988) Studies of the movement and the formation of bound residues of atrazine, of its chlorinated derivatives, and of hydroxyatrazine in soil using 14C ring-labeled compounds under outdoor conditions. Ecotox Environ Safe 15:55-1 CrossRef
    50. Sherchan SP, Bachoon DS (2011) The presence of atrazine and atrazine-degrading bacteria in the residential, cattle farming, forested and golf course regions of Lake Oconee. J Appl Microbiol 111(2):293-99 CrossRef
    51. Si YB, Zhang J, Wang SQ, Zhang LG, Zhou DM (2006) Influence of organic amendment on the adsorption and leaching of ethametsulfuron-methyl in acidic soils in China. Geoderma 130:66-6 CrossRef
    52. Spark KM, Swift RS (2002) Effect of soil composition and dissolved organic matter on pesticide sorption. Sci Total Environ 298:147-61 CrossRef
    53. Spongberg AL, Lou G (2000) Adsorption of atrazine and metolachlor in three soils from Blue Creek wetlands, Waterville. Ohio Sciences of Soils 5:1 CrossRef
    54. Stevenson FJ (1972) Organic matter reactions involving herbicides in soil. J Environ Qual 1:333-43 CrossRef
    55. Sun K, Gao B, Zhang ZY, Zhang GX, Zhao Y, Xing BS (2010) Sorption of atrazine and phenanthrene by organic matter fractions in soil and sediment. Environ Pollut 158:3520-526 CrossRef
    56. Wang QQ, Yang WC, Liu WP (1999) Adsorption of acetanilide herbicides on soils and its correlation with soil properties. Pestic Sci 55:1103-108 CrossRef
    57. Weber WJ, Huang WL, Hong Y (1998) Hysteresis in the sorption and desorption of hydrophobic organic contaminants by soils and sediments: 2. Effects of soil organic matter heterogeneity. J Contam Hydrol 31:149-65 CrossRef
    58. Zhu HX, Selim HM (2000) Hysteresis behavior of metolachlor adsorption–desorption in soils. Soil Sci 165(8):632-45 CrossRef
  • 作者单位:Yufen Huang (1)
    Zhongzhen Liu (1)
    Yan He (2)
    Fang Zeng (1)
    Ronghui Wang (1)

    1. Key Laboratory of Plant Nutrition and Fertilizer in South Region, Ministry of Agriculture/Guangdong Key Laboratory of Nutrient Cycling and Farmland Conservation, Soil and Fertilizer Institute, Soil and Fertilizer Institute, Guangdong Academy of Agricultural Sciences, Guangzhou, 510640, People’s Republic of China
    2. College of Environmental and Natural Resource Sciences, Zhejiang Provincial Key Laboratory of Subtropical Soil and Plant Nutrition, Zhejiang University, Hangzhou, 310058, People’s Republic of China
  • ISSN:1614-7480
文摘
Purpose Adsorption and desorption are important processes that influence the transport, transformation, and bioavailability of atrazine in soils. Equilibrium batch experiments were carried out to investigate the adsorption–desorption characteristics of atrazine. The objectives of this study were to (1) determine and quantify the main soil parameters governing atrazine adsorption and desorption phenomena; (2) find the correlativity between the identified soil parameters; and (3) investigate the universal desorption hysteresis traits. Materials and methods Fifteen soils with contrasting physico-chemical characteristics were collected from 11 provinces in eastern China. The equilibrium time was 24?h both for adsorption and desorption experiments. Atrazine was detected by Waters 2695/UV HPLC. Results and discussion Adsorption isotherms of atrazine could be well described by the Freundlich equation (r?≥-.994, p-lt;-.01). The total organic carbon (TOC) was the first independent variable that described 53.0?% of the total variability of K f, followed by the pH (9.9?%), and the clay (4.0?%) and silt (1.2?%) contents, separately; while the primary soil properties that affect desorption parameters included the TOC, pH, free Fe2O3 (Fed) and the sand content, with the biggest contribution achieved by the TOC (ranged from 48.5-8.1?%). The results showed that when the content ratio of clay to TOC (RCO) was less than 40, the atrazine adsorption was largely influenced by the organic matrix, while when the RCO was greater than 40, they were vital affected by the clay content. Conclusions Adsorption–desorption isotherms of atrazine in soils were nonlinear. The content of TOC, clay, and iron oxides, as well as the pH value were the key soil parameters affecting the adsorption–desorption of atrazine in soil, among which the RCO especially exhibited relevance. Additionally, the desorption hysteresis existed for atrazine retention in all 15 tested soils, and the hysteretic effect enhanced with the increasing time for desorption. This would be ascribed to the heterogeneity physical–chemical properties of these soils.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700