用户名: 密码: 验证码:
Monascus secondary metabolites: production and biological activity
详细信息    查看全文
  • 作者:Petra Patakova (1)
  • 关键词:Monascus ; Red yeast rice ; Pigments ; Monacolin K ; Citrinin
  • 刊名:Journal of Industrial Microbiology and Biotechnology
  • 出版年:2013
  • 出版时间:February 2013
  • 年:2013
  • 卷:40
  • 期:2
  • 页码:169-181
  • 全文大小:1322KB
  • 参考文献:1. Akihisa T, Tokuda H, Yasukawa K, Ukiya M, Kiyota A, Sakamoto N, Suzuki T, Tanabe N, Nishino H (2005) Azaphilones, furanoisophthalides, and amino acids from the extracts of / Monascus pilosus-fermented rice (red mold rice) and their chemopreventive effects. J Agric Food Chem 53:562-65 CrossRef
    2. Babitha S, Soccol CS, Pandey A (2006) Jackfruit seed—a novel substrate for the production of / Monascus pigments through solid-state fermentation. Food Technol Biotechnol 44:465-71
    3. Babitha S, Carvalho JC, Soccol CR, Pandey A (2008) Effect of light on growth, pigment production and culture morphology of / Monascus purpureus in solid-state fermentation. World J Microbiol Biotechnol 24:2671-675 CrossRef
    4. Becker DJ, Gordon RY, Halbert SC, French B, Morris PB, Rader DJ (2009) Red yeast rice for dyslipidemia in statin-intolerant patients: a randomized trial. Ann Intern Med 16:830-39
    5. Blanc PJ, Laussac JP, Le Bars J, Le Bars P, Loret MO, Pareilleux A, Prome D, Prome JC, Santerre AL, Goma G (1995) Characterisation of monascidin A from / Monascus as citrinin. Int J Food Microbiol 27:201-13 CrossRef
    6. Blanchi A (2005) Extracts of / Monascus purpureus beyond statins- profile of efficacy and safety of the use of extracts of / Monascus purpureus. Chin J Integr Med 11:309-13 CrossRef
    7. Brandt S, von Stetten D, Günther M, Hildebrandt P, Frankenberg-Dinkel N (2008) The fungal phytochrome FphA from / Aspergillus nidulans. J Biol Chem 283:34605-4614 CrossRef
    8. Bridge PD, Hawkworth DL (1985) Biochemical tests as an aid to the identification of / Monascus species. Lett Appl Microbiol 1:25-9 CrossRef
    9. Calvo AM, Wilson RA, Bok JW, Keller NP (2002) Relationship between secondary metabolism and fungal development. Microbiol Mol Biol Rew 66:447-59 CrossRef
    10. Campoy S, Rumbero A, Martín JF, Liras P (2006) Characterization of an hyperpigmenting mutant of / Monascus purpureus IB1: identification of two novel pigment chemical structures. Appl Microbiol Biotechnol 70:488-96 CrossRef
    11. Carels M, Shepherd D (1975) Sexual reproductive cycle of / Monascus in submerged shaken culture. J Bacteriol 122:288-94
    12. Carels M, Shepherd D (1977) The effect of different nitrogen sources on pigment production and sporulation of / Monascus species in submerged, shaken culture. Can J Microbiol 23:1360-377 CrossRef
    13. Chen F-C, Manchand PS, Whalley WB (1971) The chemistry of fungi. Part LXIV. The structure of monascin. J Chem Soc C 21:3577-579
    14. Chen M-H, Johns MR (1994) Effect of carbon source on ethanol and pigment production by / Monascus purpureus. Enzyme Microb Technol 16:584-90 CrossRef
    15. Chen Y-P, Tseng C-P, Chien I-L, Wang W-Y, Liaw L–L, Yuan G-F (2008) Exploring the distribution of citrinin biosynthesis related genes among / Monascus species. J Agric Food Chem 56:11762-1772
    16. Chen Y-P, Tseng C-P, Liaw L–L, Wang W-Y, Chen I-C, Wu W-J, Wu M-D, Yuan G-F (2008) Cloning and characterization of monacolin K?biosynthetic gene cluster from / Monascus pilosus. J Agric Food Chem 56:5639-646 CrossRef
    17. Cheng M-J, Wu M-D, Chen I-S, Tseng M, Yuan G-F (2011) Chemical constituents from the fungus / Monascus purpureus and their antifungal activity. Phytochem Lett 4:372-76 CrossRef
    18. Chiu C-H, Ni K-H, Guu Y-K, Pan T-M (2006) Production of red mold rice using a modified Nagata type koji maker. Appl Microbiol Biotechnol 73:297-04 CrossRef
    19. Endo A (2004) The origin of the statins. Atherosclerosis Suppl 5:125-30 CrossRef
    20. Fielding BC, Holker JSE, Jones DF, Powell ADG, Richmond KW, Robertson A, Whalley WB (1961) The chemistry of fungi. Part XXXIX. The structure of monascin. J Chem Soc 72:4579-589 CrossRef
    21. Fu G, Xu Y, Li Y, Tan W (2007) Construction of a replacement vector to disrupt pksCT gene for the mycotoxin citrinin biosynthesis in / Monascus aurantiacus and maintain food red pigment production. Asia Pac J Clin Nutr 16[Suppl 1]:137-42
    22. Hadfield JR, Holker JSE, Stanway DN (1967) The biosynthesis of fungal metabolites. Part II. The β-oxo equivalents in rubropunctatin and monascorubrin. J Chem Soc C 1967:751-55
    23. Hajajj H, Klaébé A, Goma G, Blanc PJ, Barbier E, Fran?ois J (2000) Medium-chain fatty acids affect citrinin production in the filamentous fungus / Monascus ruber. Appl Environ Microbiol 66:1120-125 CrossRef
    24. Haws EJ, Holker JSE, Kelly A, Powell ADG, Robertson A (1959) The chemistry of fungi. Part XXXVII. The structure of rubropunctatin. J Chem Soc (Resumed) 1959:3598-610
    25. Heber D, Yip I, Ashley JM, Elashoff DA, Elashoff RM, Go VL (1999) Cholesterol-lowering effects of a proprietary Chinese red-yeast-rice supplements. Am J Clin Nutr 69:231-36
    26. Hsu Y-W, Hsu L-C, Liang Y-H, Kuo Y-H, Pan T-M (2010) Monaphilones A-C, three new antiproliferative azaphilone derivatives from / Monascus purpureus NTU 568. J Agric Food Chem 58:8211-216 CrossRef
    27. Hsu L-C, Hsu Y-W, Liang Y-H, Liaw C–C, Kuo Y-H, Pan T-M (2012) Induction of apoptosis in human breast adenocarcinoma cells MCF-7 by monapurpyridine A, a new azaphilone derivative from / Monascus purpureus NTU 568. Molecules 17:664-73 CrossRef
    28. Huang Z, Xu Y, Li L, Yanping L (2008) Two new / Monascus metabolites with strong blue fluorescence isolated from red yeast rice. J Agric Food Chem 56:112-18 CrossRef
    29. Jia XQ, Xu ZN, Zhou LP, Sung CK (2010) Elimination of the mycotoxin citrinin in the industrial important strain / Monascus purpureus SM001. Metabolic Eng 12:1- CrossRef
    30. Jongrungruangchok S, Kittakoop P, Yongsmith B, Bavovada R, Tanasupawat S, Lartpornmatulee N, Thebtaranonth Y (2004) Azaphilone pigments from a yellow mutant of the fungus / Monascus kaoliang. Phytochemistry 65:2569-575 CrossRef
    31. Jung H, Kim C, Kim K, Shin CS (2003) Color characteristics of / Monascus pigments derived by fermentation with various amino acids. J Agric Food Chem 51:1302-306 CrossRef
    32. J?zlová P, Martínková L, Lozinski J, Machek F (1994) Ethanol as substrate for pigment production by the fungus / Monascus purpureus. Enzyme Microb Technol 16:996-001 CrossRef
    33. J?zlová P, Martínková L, K?en V (1996) Secondary metabolites of the fungus / Monascus: a review. J Ind Microbiol 16:163-70 CrossRef
    34. Kim HJ, Ji GE, Lee IH (2007) Natural occurring levels of citrinin and monakolin K?in Korean / Monascus fermentation products. Food Sci Biotechnol 16:142-45
    35. Knecht A, Humpf H-U (2006) Cytotoxic and antimitotic effects of N-containing / Monascus metabolites studied using immortalized human kidney epithelial cells. Mol Nutr Food Res 50:406-12 CrossRef
    36. Kumari HPM, Naidu KA, Vishwanatha S, Narasimhamurthy K, Vijayalakshmi G (2009) Safety evaluation of / Monascus purpureus red mould rice in albino rats. Food Chem Toxicol 47:1739-746 CrossRef
    37. Kumasaki S, Nakanishi K, Nishikawa E, Ohashi M (1962) Structure of monascorubrin. Tetrahedron 18:1171-184 CrossRef
    38. Lai Y, Wang L, Qing L, Chen F (2011) Effects of cyclic AMP on development and secondary metabolites of / Monascus ruber -. Lett Appl Microbiol 52:420-26 CrossRef
    39. Lee C-L, Pan T-M (2011) Red mold fermented products and Alzheimer`s disease: a review. Appl Microbiol Biotechnol 91:461-69 CrossRef
    40. Lee C-L, Wang J–J, Kuo S-L, Pan T-M (2006) / Monascus fermentation of discorea for increasing the production of cholesterol-lowering agent monacolin K?and antiinflammation agent monascin. Appl Microbiol Biotechnol 72:1254-262 CrossRef
    41. Lee C-L, Chen W-P, Wang J–J, Pan T-M (2007) A simple and rapid approach for removing citrinin while retaining monacolin K?in red mold rice. J Agric Food Chem 55:11101-1108 CrossRef
    42. Lee C-L, Kung Y-H, Wu C-L, Hsu Y-W, Pan T-M (2010) Monascin and ankaflavin act as a novel hypolipidemic and high-density lipoprotein cholesterol-raising agents in red mold dioscorea. J Agric Food Chem 58:9013-019 CrossRef
    43. Li Y, Xu W, Tang Y (2010) Classification, prediction and verification of the regioselectivity of fungal polyketide synthase product template domains. J Biol Chem 285:22764-2773 CrossRef
    44. Li Y-G, Zhang F, Wang Z-T, Hu Z-B (2004) Identification and chemical profiling of monacolins in red yeast rice using high-performance liquid chromatography with photodiode array detector and mass spectrometry. J Pharm Biomed Anal 35:1101-112 CrossRef
    45. Lin TF, Demain AL (1991) Effect of nutrition of / Monascus sp. on formation of red pigments. Appl Microbiol Biotechnol 36:70-5 CrossRef
    46. Lin TF, Demain AL (1993) Resting cells studies on formation of water-soluble red pigments by / Monascus sp. J Ind Microbiol 12:361-67 CrossRef
    47. Lin TF, Demain AL (1994) Leucine interference in the production of water-soluble red / Monascus pigments. Arch Microbiol 162:114-19 CrossRef
    48. Lin TF, Demain AL (1995) Negative effect of ammonium nitrate as nitrogen source on the production of water-soluble red pigments by / Monascus sp. Appl Microbiol Biotechnol 43:701-05 CrossRef
    49. Lin TF, Yakushijin K, Buchi GH, Demain AL (1992) Formation of water-soluble / Monascus pigments by biological and semi-synthetic processes. J Ind Microbiol 9:173-79 CrossRef
    50. Lin Y-L, Wang T-H, Lee M-H, Su N-W (2008) Biologically active components and nutraceuticals in the / Monascus-fermented rice: a review. Appl Microbiol Biotechnol 77:965-73 CrossRef
    51. Linden H (2002) A white collar protein senses blue light. Science 297:777-78 CrossRef
    52. Loret M-O, Morel S (2010) Isolation and structural characterization of two new metabolites from / Monascus. J Agric Food Chem 58:1800-803 CrossRef
    53. Manchand PS, Whalley WB, Chen F-C (1973) Isolation and structure of ankaflavin: a new pigment from / Monascus anka. Phytochemistry 12:2531-532 CrossRef
    54. Manzoni M, Rollini M (2002) Biosynthesis and biotechnological production of statins by filamentous fungi and application of these cholesterol-lowering drugs. Appl Microbiol Biotechnol 58:555-64 CrossRef
    55. Martínková L, Patáková P (1999) Monascus. In: Robinson RK, Batt CA, Patel PD (eds) Encyclopedia of food microbiology. Academic Press, London, pp 1481-487 CrossRef
    56. Martínková L, J?zlová P, Vesely D (1995) Biological activity of polyketide pigments produced by the fungus / Monascus. J Appl Bacteriol 79:609-16 CrossRef
    57. Martínková L, Patáková-J?zlová P, K?en V, Ku?erová Z, Havlí?ek V, Ol?ovsky P, Hovorka O, ?íhová B, Vesely D, Veselá D, Ulrichová J, P?ikrylová V (1999) Biological activities of oligoketide pigments of / Monascus purpureus. Food Add Cont 16:15-4 CrossRef
    58. Mazumder PM, Mazumder R, Mazumder A, Sasmal D (2002) Antimicrobial activity of the mycotoxin citrinin obtained from the fungus / Penicillium citrinum. Anc Sci Life 21:1-
    59. Miyake T, Mori A, Kii T, Okuno T, Usui Y, Sato F, Sammoto H, Watanabe A, Kariayma M (2005) Light effects on cell development and secondary metabolism in / Monascus. J Ind Microbiol Biotechnol 32:103-08 CrossRef
    60. Miyake T, Uchitomi K, Zhang M-Y, Kono I, Nozaki N, Sammoto H, Inagaki K (2006a) Effects of the principal nutrients on lovastatin production by / Monascus pilosus. Biosci Biotechnol Biochem 70:1154-159 CrossRef
    61. Miyake T, Zhang M-Y, Kono I, Nozaki N, Sammoto H (2006b) Repression of secondary metabolite production by exogenous cAMP in / Monascus. Biosci Biotechnol Biochem 70:1523-524
    62. Miyake T, Kono I, Nozaki N, Sammoto H (2008) Analysis of pigment compositions in various / Monascus cultures. Food Sci Technol Res 14:194-97 CrossRef
    63. Mukherjee G, Singh SK (2011) Purification and characterization of a new red pigment from / Monascus purpureus in submerged fermentation. Process Biochem 46:188-92 CrossRef
    64. Nozaki H, Date S, Kondo H, Kiyohara H, Takaoka D, Tada T, Nakayama M (1991) Ankalactone, a new α, β-unsaturated γ-lactone from / Monascus anka. Agric Biol Chem 55:899-00 CrossRef
    65. Orozco SFB, Kilikian BV (2008) Effect of pH on citrinin and red pigments production by / Monascus purpureus CCT3802. World J Microbiol Biotechnol 24:263-68 CrossRef
    66. Osmanova N, Schultze W, Ahoub N (2010) Azaphilones: a class of fungal metabolites with diverse biological activities. Phytochem Rev 9:315-42 CrossRef
    67. Patáková P (2005) Red yeast rice. In: McGraw-Hill Yearbook of Science and Technology, McGraw-Hill, New York, pp 286-88. ISBN 0-07-144504-8
    68. Pattanagul P, Pinthong R, Phianmongkhol A, Tharatha S (2008) Mevinolin, citrinin and pigments of adlay angkak fermented by / Monascus sp. Int J Food Microbiol 126:20-3 CrossRef
    69. Pitt JI, Hocking AD (2009) Fungi and food spoilage, 3rd edn. Springer, New York CrossRef
    70. Purschwitz J, Müller S, Kastner C, Sch?ser M, Haas H, Espeso EA, Atoui A, Calvo AM, Fischer R (2008) Functional and physical interaction of blue- and red-light sensors in / Aspergillus nidulans. Curr Biol 18:255-59 CrossRef
    71. Sabater-Vilar M, Maas RFM, Fink-Gremmels J (1999) Mutagenicity of commercial / Monascus fermentation products and the role of citrinin contamination. Mut Res 444:7-6 CrossRef
    72. Sato K, Iwakami S, Goda Y, Okuyama E, Yoshikira K, Ichi T, Odake Y, Noguchi H, Sankawa U (1992) Novel natural colorants from / Monascus anka U-1. Heterocycles 34:2057-060 CrossRef
    73. Schneweis I, Meyer K, H?rmansdorfer S, Bauer J (2001) Metabolites of / Monascus ruber in silages. J Anim Physiol Anim Nutr 85:38-4 CrossRef
    74. Schümann J, Herweck C (2006) Advances in cloning, functional analysis and heterologous expression of fungal polyketide synthase genes. J Biotechnol 124:690-03 CrossRef
    75. Schwerdtfeger C, Linden H (2003) VIVID is a flavoprotein and serves as a fungal blue light receptor for photoadaptation. EMBO J 22:4846-855 CrossRef
    76. Seenivasan A, Subhagar S, Aravindan R, Viruthagiri T (2008) Microbial production and biomedical applications of lovastatin. Indian J Pharm Sci 70:701-09 CrossRef
    77. Shao Y, Xu L, Chen F (2011) Genetic diversity analysis of / Monascus strains using SRAP and ISSR markers. Mycoscience 52:224-33 CrossRef
    78. Shepherd D (1977) The relationship between pigment production and sporulation in / Monascus. In: Meyrath J, Bu`lock JD (eds) Biotechnology and fungal differentiation. FEMS Symp No 4. Academic Press, London, pp 103-18
    79. Su Y-C, Wang J–J, Lin T–T, Pan T-M (2003) Production of the secondary metabolites γ-aminobutyric acid and monakolin K?by / Monascus. J Ind Microbiol Biotechnol 30:41-6
    80. Velmurugan P, Lee YH, Venil CK, Lashmanaperumalsamy P, Chae J-C, Oh BT (2010) Effect of light on growth, intracellular and extracellular pigment production by five pigment-producing filamentous fungi in synthetic medium. J Biosci Bioeng 109:346-50 CrossRef
    81. Wang J–J, Lee C-L, Pan T-M (2003) Improvement of monacolin K, γ-aminobutyric acid and citrinin production ratio as a function of environmental conditions of / Monascus purpureus NTU 601. J Ind Microbiol Biotechnol 30:669-76 CrossRef
    82. Wild D, Tóth G, Humpf H-U (2003) New / Monascus metabolites with a pyridine structure in red fermented rice. J Agric Food Chem 51:5493-496 CrossRef
    83. Wong HC, Bau YS (1977) Pigmentation and antibacterial activity of fast neutron- and X-ray induced strains of / Monascus purpureus Went. Plant Physiol 60:578-81 CrossRef
    84. Wong HC, Chien C-Y (1986) Ultrastructure of sexual reproduction of / Monascus purpureus. Mycologia 78:713-21 CrossRef
    85. Wong HC, Koehler PE (1981) Production and isolation of an antibiotic from / Monascus purpureus and its relationship to pigment production. J Food Sci 46:589-92 CrossRef
    86. Wu M-D, Chen M-J, Yech Y-J, Chen Y-L, Chen K-P, Chen I-S, Yang P-H, Yuan G-F (2011) Monasnicotinates A-D, four new pyridine alkaloids from the fungal strain / Monascus pilosus BCRC 38093. Molecules 16:4719-727 CrossRef
    87. Xie X, Wang Y, Zhang S, Zhang G, Xu Y, Bi H, Daugherty A, Wang J-A (2012) Chinese red yeast rice attenuates the development of angiotensin II-induced abdominal aortic aneurysm and atherosclerosis. J Nutr Biochem 23:549-56 CrossRef
    88. Xu B-J, Wang Q-J, Jia X-Q, Sung C-K (2005) Enhanced lovastatin production by solid state fermentation of / Monascus ruber. Biotechnol Bioproc Eng 10:78-4 CrossRef
    89. Yongsmith B, Tabloka W, Yongmanitchai W, Bavavoda R (1993) Culture conditions for yellow pigment formation by / Monascus sp. KB 10 grown on cassava medium. World J Microbiol Biotechnol 9:85-0 CrossRef
    90. Yu C–C, Wang J–J, Lee C-L, Lee S-H, Pan T-M (2008) Safety and mutagenicity evaluation of nanoparticulate red mold rice. J Agric Food Chem 56:11038-1048 CrossRef
    91. Yu J-H (2006) Heterotrimeric G protein signaling and RGSs in / Aspergillus nidulans. J Microbiol 44:145-54
    92. Zheng Y, Xin Y, Shi X, Guo Y (2010) Cytotoxicity of / Monascus pigments and their derivatives to human cancer cells. J Agric Food Chem 58:9523-528 CrossRef
  • 作者单位:Petra Patakova (1)

    1. Department of Biotechnology, Institute of Chemical Technology Prague, Technicka 5, 16628, Prague 6, Czech Republic
  • ISSN:1476-5535
文摘
The genus Monascus, comprising nine species, can reproduce either vegetatively with filaments and conidia or sexually by the formation of ascospores. The most well-known species of genus Monascus, namely, M. purpureus, M. ruber and M. pilosus, are often used for rice fermentation to produce red yeast rice, a special product used either for food coloring or as a food supplement with positive effects on human health. The colored appearance (red, orange or yellow) of Monascus-fermented substrates is produced by a mixture of oligoketide pigments that are synthesized by a combination of polyketide and fatty acid synthases. The major pigments consist of pairs of yellow (ankaflavin and monascin), orange (rubropunctatin and monascorubrin) and red (rubropunctamine and monascorubramine) compounds; however, more than 20 other colored products have recently been isolated from fermented rice or culture media. In addition to pigments, a group of monacolin substances and the mycotoxin citrinin can be produced by Monascus. Various non-specific biological activities (antimicrobial, antitumor, immunomodulative and others) of these pigmented compounds are, at least partly, ascribed to their reaction with amino group-containing compounds, i.e. amino acids, proteins or nucleic acids. Monacolins, in the form of β-hydroxy acids, inhibit hydroxymethylglutaryl-coenzyme A reductase, a key enzyme in cholesterol biosynthesis in animals and humans.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700