用户名: 密码: 验证码:
Establishment and characterization of a cell line from the mosquito Culex tritaeniorhynchus (Diptera: Culicidae)
详细信息    查看全文
  • 作者:Ryusei Kuwata (1)
    Keita Hoshino (1)
    Haruhiko Isawa (1)
    Yoshio Tsuda (1)
    Shigeru Tajima (2)
    Toshinori Sasaki (1)
    Tomohiko Takasaki (2)
    Mutsuo Kobayashi (1)
    Kyoko Sawabe (1)
  • 关键词:Mosquito cell line ; Japanese encephalitis virus ; Dengue virus ; Flaviviridae ; Arbovirus
  • 刊名:In Vitro Cellular & Developmental Biology - Animal
  • 出版年:2012
  • 出版时间:June 2012
  • 年:2012
  • 卷:48
  • 期:6
  • 页码:369-376
  • 全文大小:599KB
  • 参考文献:1. Athawale S. S.; Sudeep A. B.; Barde P. V.; Jadi R.; Pant U.; Mishra A. C.; Mourya D. T. A new cell line from the embryonic tissues of / Culex tritaeniorhynchus and its susceptibility to certain flaviviruses. / Acta Virol. 46(4): 237-40; 2002.
    2. Brackney D. E.; Beane J. E.; Ebel G. D. RNAi targeting of West Nile virus in mosquito midguts promotes virus diversification. / PLoS Pathog. 5(7): e1000502; 2009. CrossRef
    3. Brackney D. E.; Scott J. C.; Sagawa F.; Woodward J. E.; Miller N. A.; Schilkey F. D.; Mudge J.; Wilusz J.; Olson K. E.; Blair C. D.; Ebel G. D. C6/36 / Aedes albopictus cells have a dysfunctional antiviral RNA interference response. / PLoS Negl. Trop. Dis. 4(10): e856; 2010. CrossRef
    4. Breland O. P. Studies on the chromosomes of mosquitoes. / Ann. Entomol. Soc. Am. 54(3): 360-75; 1961.
    5. Campbell C. L.; Keene K. M.; Brackney D. E.; Olson K. E.; Blair C. D.; Wilusz J.; Foy B. D. / Aedes aegypti uses RNA interference in defense against Sindbis virus infection. / BMC Microbiol. 8: 47; 2008. CrossRef
    6. Chao J.; Ball G. H. A comparison of amino acid utilization by cell lines of / Culex tarsalis and / Culex pipiens. In: Kurstak E.; Maramorosch K. (eds) Invertebrate tissue culture: applications in medicine, biology and agriculture. Academic Press, New York, pp 263-66; 1976.
    7. Chen Y. Y.; Fan Y. C.; Tu W. C.; Chang R. Y.; Shih C. C.; Lu I. H.; Chien M. S.; Lee W. C.; Chen T. H.; Chang G. J.; Chiou S. S. Japanese encephalitis virus genotype replacement; Taiwan; 2009-010. / Emerg Infect. Dis. 17(12): 2354-356; 2011. CrossRef
    8. Chotkowski H. L.; Ciota A. T.; Jia Y.; Puig-Basagoiti F.; Kramer L. D.; Shi P. Y.; Glaser R. L. West Nile virus infection of / Drosophila melanogaster induces a protective RNAi response. / Virology 377(1): 197-06; 2008. CrossRef
    9. Cirimotich C. M.; Scott J. C.; Phillips A. T.; Geiss B. J.; Olson K. E. Suppression of RNA interference increases alphavirus replication and virus-associated mortality in / Aedes aegypti mosquitoes. / BMC Microbiol. 9: 49; 2009. CrossRef
    10. Cook S.; Lien N. G.; McAlister E.; Harbach R. E. / Bothaella manhi, a new species of tribe Aedini (Diptera: Culicidae) from the Cuc Phuong National Park of Vietnam based on morphology and DNA sequence. / Zootaxa 2661: 33-6; 2010.
    11. Dimopoulos G.; Richman A.; Müller H. M.; Kafatos F. C. Molecular immune responses of the mosquito / Anopheles gambiae to bacteria and malaria parasites. / Proc. Nat. Acad. Sci. U. S. A. 94(21): 11508-1513; 1997. CrossRef
    12. Erlanger T. E.; Weiss S.; Keiser J.; Utzinger J.; Wiedenmayer K. Past, present, and future of Japanese encephalitis. / Emerg. Infect. Dis. 15(1): 1-; 2009. CrossRef
    13. Felsenstein J. Confidence limits on phylogenies: an approach using the bootstrap. / Evolution 39(4): 783-91; 1985. CrossRef
    14. Felsenstein J. PHYLIP (Phylogeny Inference Package) version 3.6. / Distributed by the author. Department of Genome Sciences. University of Washington, Seattle; 2005.
    15. Freshney R. I. Culture of animal cells (5th edition): a manual of basic technique. John Wiley & Sons, Inc., Hoboken; 2005. CrossRef
    16. Giulivi C.; Ross-Inta C.; Horton A. A.; Luckhart S. Metabolic pathways in / Anopheles stephensi mitochondria. / Biochem. J. 415(2): 309-16; 2008. CrossRef
    17. Grace T. D. C. Establishment of a line of mosquito ( / Aedes aegypti L.) cells grown in vitro. / Nature 211(5047): 366-67; 1966. CrossRef
    18. Hoshino K.; Isawa H.; Tsuda Y.; Kobayashi M. Laboratory colonization of / Aedes japonicus japonicus (Diptera: Culicidae) collected in Narita, Japan and the biological properties of the established colony. / Jpn. J. Infect. Dis. 63(6): 401-04; 2010.
    19. Hsu, S. H. Growth of arboviruses in arthropod cell cultures: comparative studies. I. Preliminary observations on growth of arboviruses in a newly established line of mosquito cell ( / Culex quinquefasciatus Say). In : Welss, E. (ed.) / Curr. Top. Microbiol. Immunol. 55. Springer, Berlin Heidelberg New York, pp 140-48; 1971.
    20. Hsu S. H.; Li S. Y.; Cross J. H. A cell line derived from ovarian tissue of / Culex tritaeniorhynchus summorosus Dyar. / J. Med. Entomol. 9(1): 86-1; 1972.
    21. Hsu S. H.; Mao W. H.; Cross J. H. Establishment of a line of cells derived from ovarian tissue of / Culex quinquefasciatus Say. / J. Med. Entomol. 7(6): 703-07; 1970.
    22. Hsu S. H.; Wang B. T.; Huang M. H.; Wong W. J.; Cross J. H. Growth of Japanese encephalitis virus in / Culex tritaeniorhynchus cell cultures. / Am.J.Trop. Med. Hyg. 24(5): 881-88; 1975.
    23. Hughes G. L.; Ren X.; Ramirez J. L.; Sakamoto J. M.; Bailey J. A.; Jedlicka A. E.; Rasgon J. L. / Wolbachia infections in / Anopheles gambiae cells: transcriptomic characterization of a novel host–symbiont interaction. / PLoS Pathog. 7(2): e1001296; 2011. CrossRef
    24. Igarashi A. Isolation of a Singh’s / Aedes albopictus cell colne sensitive to dengue and chikungunya viruses. / J. Gen. Virol. 40(3): 531-44; 1978. CrossRef
    25. Keene K. M.; Foy B. D.; Sanchez-Vargas I.; Beaty B. J.; Blair C. D.; Olson K. E. RNA interference acts as a natural antiviral response to O’nyong-nyong virus ( / Alphavirus; Togaviridae) infection of / Anopheles gambiae. / Proc. Nat. Acad. Sci. U. S. A. 101(49): 17240-7245; 2004. CrossRef
    26. Kimura M. A simple method for estimating evolutionary rate of base substitution through comparative study of nucleotide sequences. / J. Mol. Evolution 16(2): 111-20; 1980. CrossRef
    27. Kitamura S. Establishment of cell line from / Culex mosquito. / Kobe J. Med. Sci. 16(1): 41-0; 1970.
    28. Lan Q.; Fallon A. M. Small heat shock proteins distinguish between two mosquito species and confirm identity of their cell lines. / Am.J.Trop. Med. Hyg. 43(6): 669-76; 1990.
    29. Larkin M. A.; Blackshields G.; Brown N. P.; Chenna R.; McGettigan P. A.; McWilliam H.; Valentin F.; Wallace I. M.; Wilm A.; Lopez R.; Thompson J. D.; Gibson T. J.; Higgins D. G. Clustal W and Clustal X version 2.0. / Bioinformatics 23(21): 2947-948; 2007. CrossRef
    30. Li M. H.; Fu S. H.; Chen W. X.; Wang H. Y.; Guo Y. H.; Liu Q. Y.; Li Y. X.; Luo H. M.; Da W.; Duo Ji D. Z.; Ye X. M.; Liang G. D. Genotype V Japanese encephalitis virus is emerging. / PLoS Negl. Trop. Dis. 5(7): e1231; 2011. CrossRef
    31. Maharaj P. D.; Anishchenko M.; Langevin S. A.; Fang Y.; Reisen W. K.; Brault A. C. Structural gene (prME) chimeras of St. Louis encephalitis virus and West Nile virus exhibit altered in vitro cytopathic and growth phenotypes. / J. Gen. Virol. 93(1): 39-9; 2011. CrossRef
    32. Main O. M.; Hardy J. L.; Reeves W. C. Growth of arboviruses and other viruses in a continuous line of / Culex tarsalis cells. / J. Med. Entomol. 14(1): 107-12; 1977.
    33. Mangada M. N.; Takegami T. Molecular characterization of the Japanese encephalitis virus representative immunotype strain JaGAr 01. / Virus Res. 59(1): 101-12; 1999. CrossRef
    34. Marhoul Z.; Pudney M. A mosquito cell line (MOS. 55) from / Anopheles gambiae larva. / Trans. R. Soc. Trop. Med. Hyg. 66(1): 183-84; 1972. CrossRef
    35. Mitsuhashi J. List of reported continuous invertebrate cell lines. In: Mitsuhashi J. (ed) Invertebrate tissue culture methods. Springer, Japan, pp 421-30; 2002. CrossRef
    36. Mitsuhashi J.; Maramorosch K. Leafhopper tissue culture: embryonic, nymphal, and imaginal tissues from aseptic insects. / Contrib. Boyce Thompson Inst. 22(8): 435-60; 1964.
    37. Müller H. M.; Dimopoulos G.; Blass C.; Kafatos F. C. A hemocyte-like cell line established from the malaria vector / Anopheles gambiae expresses six prophenoloxidase genes. / J. Biol. Chem. 274(17): 11727-1735; 1999. CrossRef
    38. Myles K. M.; Wiley M. R.; Morazzani E. M.; Adelman Z. N. Alphavirus-derived small RNAs modulate pathogenesis in disease vector mosquitoes. / Proc. Nat. Acad. Sci. U. S. A. 105(50): 19938-9943; 2008. CrossRef
    39. Nerome R.; Tajima S.; Takasaki T.; Yoshida T.; Kotaki A.; Lim C. K.; Ito M.; Sugiyama A.; Yamauchi A.; Yano T.; Kameyama T.; Morishita I.; Kuwayama M.; Ogawa T.; Sahara K.; Ikegaya A.; Kanda M.; Hosoya Y.; Itokazu K.; Onishi H.; Chiya S.; Yoshida Y.; Tabei Y.; Katsuki K.; Tabata K.; Harada S.; Kurane I. Molecular epidemiological analyses of Japanese encephalitis virus isolates from swine in Japan from 2002 to 2004. / J. Gen. Virol. 88(10): 2762-768; 2007. CrossRef
    40. Nga P. T.; del Carmen Parquet M.; Cuong V. D.; Ma S. P.; Hasebe F.; Inoue S.; Makino Y.; Takagi M.; Nam V. S.; Morita K. Shift in Japanese encephalitis virus (JEV) genotype circulating in northern Vietnam: implications for frequent introductions of JEV from Southeast Asia to East Asia. / J. Gen. Virol. 85(6): 1625-631; 2004. CrossRef
    41. Oelofsen M. J.; Gericke A.; Smith M. S.; van der Linde T. C. Establishment and characterization of a cell line from the mosquito / Culex ( / Culex) / theileri (Diptera: Culicidae) and its susceptibility to infection with arboviruses. / J. Med. Entomol. 27(6): 939-44; 1990.
    42. Page, R. D. M. TreeView Version 1. 6. 6.. http://taxonomy.zoology.gla.ac.uk/rod/treeview.html; 2001.
    43. Pan X. L.; Liu H.; Wang H. Y.; Fu S. H.; Liu H. Z.; Zhang H. L.; Li M. H.; Gao X. Y.; Wang J. L.; Sun X. H.; Lu X. J.; Zhai Y. G.; Meng W. S.; He Y.; Wang H. Q.; Han N.; Wei B.; Wu Y. G.; Feng Y.; Yang D. J.; Wang L. H.; Tang Q.; Xia G.; Kurane I.; Rayner S.; Liang G. D. Emergence of genotype I of Japanese encephalitis virus as the dominant genotype in Asia. / J. Virol. 85(19): 9847-853; 2011. CrossRef
    44. Pant U.; Banerjee K.; Athawale S. A.; Dhanda V. Susceptibility of / Culex bitaeniorhynchus cell line to some arboviruses. / Indian J. Med. Res. 76: 789-94; 1982.
    45. Pant U.; Dhanda V. Establishment of a cell line from / Culex bitaeniorhynchus. / J. Tissue Culture Methods 6(2): 61-3; 1980. CrossRef
    46. Peleg J. Growth of arboviruses in primary tissue culture of / Aedes aegypti embryos. / Am.J.Trop. Med. Hyg. 17(2): 219-23; 1968.
    47. Pudney M.; Varma M. G. / Anopheles stephensi var. / mysorenis: establishment of a larval cell line (Mos. 43). / Exp. Parasitol. 29(1): 7-2; 1971. CrossRef
    48. Saitou N.; Nei M. The neighbor-joining method: a new method for reconstructing phylogenetic trees. / Mol. Biol. Evol. 4(4): 406-25; 1987.
    49. Sánchez-Vargas I.; Scott J. C.; Poole-Smith B. K.; Franz A. W.; Barbosa-Solomieu V.; Wilusz J.; Olson K. E.; Blair C. D. Dengue virus type 2 infections of / Aedes aegypti are modulated by the mosquito’s RNA interference pathway. / PLoS Pathog. 5(2): e1000299; 2009. CrossRef
    50. Scott J. C.; Brackney D. E.; Campbell C. L.; Bondu-Hawkins V.; Hjelle B.; Ebel G. D.; Olson K. E.; Blair C. D. Comparison of dengue virus type 2-specific small RNAs from RNA interference-competent and -incompetent mosquito cells. / PLoS Negl. Trop. Dis. 4(10): e848; 2010. CrossRef
    51. Singh K. R. P. Cell cultures derived from larvae of / Aedes albopictus (Skuse) and / Aedes aegypti (L.). / Curr. Sci. 36(19): 506-08; 1967.
    52. Siu R. W.; Fragkoudis R.; Simmonds P.; Donald C. L.; Chase-Topping M. E.; Barry G.; Attarzadeh-Yazdi G.; Rodriguez-Andres J.; Nash A. A.; Merits A.; Fazakerley J. K.; Kohl A. Antiviral RNA interference responses induced by Semliki Forest virus infection of mosquito cells: characterization, origin, and frequency-dependent functions of virus-derived small interfering RNAs. / J. Virol. 85(6): 2907-917; 2011. CrossRef
    53. Solomon T.; Ni H.; Beasley D. W.; Ekkelenkamp M.; Cardosa M. J.; Barrett A. D. Origin and evolution of Japanese encephalitis virus in southeast Asia. / J. Virol. 77(5): 3091-098; 2003. CrossRef
    54. Tajima S.; Nukui Y.; Ito M.; Takasaki T.; Kurane I. Nineteen nucleotides in the variable region of 3-non-translated region are dispensable for the replication of dengue type 1 virus in vitro. / Virus Res. 116: 38-4; 2006. CrossRef
    55. Takhampunya R.; Kim H. C.; Tippayachai B.; Kengluecha A.; Klein T. A.; Lee W. J.; Grieco J.; Evans B. P. Emergence of Japanese encephalitis virus genotype V in the Republic of Korea. / Virology J. 8: 449; 2011. CrossRef
    56. Tesh R. B. Establishment of two cell lines from the mosquito / Toxorhynchites amboinensis (Diptera: Culicidae) and their susceptibility to infection with arboviruses. / J. Med. Entomol. 17(4): 338-43; 1980.
    57. van den Hurk A. F.; Ritchie S. A.; Mackenzie J. S. Ecology and geographical expansion of Japanese encephalitis virus. / Annu. Rev. Entomol. 54: 17-5; 2009. CrossRef
    58. Vanlandingham D. L.; Hong C.; Klingler K.; Tsetsarkin K.; McElroy K. L.; Powers A. M.; Lehane M. J.; Higgs S. Differential infectivities of o’nyong-nyong and chikungunya virus isolates in / Anopheles gambiae and / Aedes aegypti mosquitoes. / Am.J.Trop. Med. Hyg. 72(5): 616-21; 2005.
    59. Varma M. G. R.; Pudney M. The growth and serial passage of cell lines from / Aedes aegypti (L.) larvae in different media. / J. Med. Entom. 6(4): 432-39; 1969.
    60. World Health Organization. http://www.who.int/mediacentre/factsheets/fs117/en/index.html; 2009.
  • 作者单位:Ryusei Kuwata (1)
    Keita Hoshino (1)
    Haruhiko Isawa (1)
    Yoshio Tsuda (1)
    Shigeru Tajima (2)
    Toshinori Sasaki (1)
    Tomohiko Takasaki (2)
    Mutsuo Kobayashi (1)
    Kyoko Sawabe (1)

    1. Department of Medical Entomology, National Institute of Infectious Diseases, 1-23-1 Toyama, Shinjuku-ku, Tokyo, 162-8640, Japan
    2. Department of Virology I, National Institute of Infectious Diseases, 1-23-1 Toyama, Shinjuku-ku, Tokyo, 162-8640, Japan
文摘
We established a continuous cell line from the embryo of the mosquito Culex tritaeniorhynchus Giles (Diptera: Culicidae), a known major vector of the Japanese encephalitis virus (family Flaviviridae, genus Flavivirus) in Asia. The cell line, designated NIID-CTR, was serially subcultured in VP-12 medium supplemented with 10?% heat-inactivated fetal bovine serum (FBS). It continued to grow for more than 60 passages over a 750-d period. The NIID-CTR cell line mainly comprised two morphologically distinct types of cells with adhesive properties: spindle-shaped and round cells. Most of the NIID-CTR cells at the 45th passage were diploid (2n--). The growth kinetics of the NIID-CTR cells was significantly affected by the FBS concentration in the medium. The population doubling time of the NIID-CTR cells was 20?h in the presence of 10?% FBS and 76?h in its absence. The DNA sequence of the mitochondrial cytochrome oxidase I gene confirmed that the NIID-CTR cell line was derived from C. tritaeniorhynchus. The cells were highly susceptible to Japanese encephalitis and Dengue viruses, thus providing a valuable tool for the study of mosquito-borne flaviviruses.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700