用户名: 密码: 验证码:
Duplication, concerted evolution and purifying selection drive the evolution of mosquito vitellogenin genes
详细信息    查看全文
  • 作者:Song Chen (1)
    Jennifer S Armistead (1)
    Katie N Provost-Javier (1)
    Joyce M Sakamoto (2)
    Jason L Rasgon (1) (3)
  • 刊名:BMC Evolutionary Biology
  • 出版年:2010
  • 出版时间:December 2010
  • 年:2010
  • 卷:10
  • 期:1
  • 全文大小:1704KB
  • 参考文献:1. Wahli W, Dawid IB, Ryffel GU, Weber R: Vitellogenesis and the vitellogenin gene family. / Science 1981, 212:298鈥?04. CrossRef
    2. Corthesy B, Leonnard P, Wahli W: Transcriptional potentiation of the vitellogenin BI promoter by a combination of both nucleosome assembly and transcription factors: an in vitro dissection. / Mol Cell Biol 1990, 10:3926鈥?933.
    3. Koeppe JK, Fuchs M, Chen TT, Hunt LM, Kovalick GE, Briers T: The role of juvenile hormone in reproduction. In / Comprehensive lnsect Biochemistry and Pharmacology. / Volume 8. Edited by: Kerkut GA, Gilbert LI. Pergamon Press, Oxford; 1985:165鈥?03.
    4. Hagedorn HH: The role of ecdysteroids in reproduction. In / Comprehensive lnsect Biochemistry and Pharmacology. / Volume 8. Edited by: Kerkut GA, Gilbert LI. Pergamon Press, Oxford; 1985:205鈥?62.
    5. Raikhel AS, Dhadialla TS: Accumulation of yolk proteins in insect oocytes. / Annu Rev Entomol 1992, 37:217鈥?51. CrossRef
    6. Sappington TW, Raikhel AS: Molecular characteristics of insect vitellogenins and vitellogenin receptors. / Insect Biochem Mol Biol 1998, 28:277鈥?00. CrossRef
    7. Snigirevskaya ES, Raikhel AS: Receptor-mediated endocytosis of yolk proteins in insect oocytes. In / Progress in Vitellogenesis. Reproductive Biology of Invertebrates. / Volume XII. Edited by: Raikhel AS, Sappington TW. Science Publishers, Inc., Enfield, USA-Plymouth UK; 2005:199鈥?28.
    8. Tufail M, Takeda M: Molecular cloning, characterization and regulation of the cockroach vitellogenin receptor during oogenesis. / Insect Mol Biol 2005, 14:389鈥?01. CrossRef
    9. Chen JS, Cho WL, Raikhel AS: Mosquito vitellogenin cDNA. Sequence similarity with vertebrate vitellogenin and insect larval hemolymph proteins. / J Molec Biol 1994, 237:641鈥?47. CrossRef
    10. Romans P, Tu Z, Ke Z, Hagedorn HH: Analysis of a vitellogenin gene of the mosquito, Aedes aegypti and comparisons to vitellogenins from other organisms. / Insect Biochem Molec Biol 1995, 25:939鈥?58. CrossRef
    11. Kokoza VA, Martin D, Mienaltowski M, Ahmed A, Morton C, Raikhel AS: Transcriptional regulation of the mosquito Aedes aegypti vitellogenin gene by a blood-meal triggered cascade. / Gene 2001, 274:47鈥?5. CrossRef
    12. Attardo G, Higgs S, Klingler KA, Vanlandingham DL, Raikhel AS: RNAi-mediated knockdown of a GATA factor reveals a link to anautogeny in the mosquito, Aedes aegypti. / Proc Natl Acad USA 2003, 100:13374鈥?3379. CrossRef
    13. Hansen IA, Attardo GM, Park JH, Peng Q, Raikhel AS: Target of rapamycin-mediated amino acid signaling in mosquito anautogeny. / Proc Natl Acad Sci USA 2004, 101:10626鈥?0631. CrossRef
    14. Attardo GM, Hansen IA, Raikhel AS: Nutritional regulation of vitellogenesis in mosquitoes: Implications for anautogeny. / Insect Biochem Mol Biol 2005, 35:661鈥?75. CrossRef
    15. Park JH, Attardo GM, Hansen IA, Raikhel AS: GATA factor translation is the final downstream step in the amino acid/target-of-rapamycin-mediated vitellogenin gene expression in the anautogenous mosquito Aedes aegypti. / J Biol Chem 2006, 281:11167鈥?1176. CrossRef
    16. Martin D, Piulachs MD, Raikhel AS: A Novel GATA factor transcriptionally represses yolk protein precursor genes in the mosquito Aedes aegypti via interaction with the CtBP corepressor. / Mol Cell Biol 2001, 21:164鈥?74. CrossRef
    17. Kokoza VA, Ahmed A, Cho WL, Jasinskiene N, James AA, Raikhel AS: Engineering blood meal-activated systemic immunity in the yellow fever mosquito, Aedes aegypti. / Proc Natl Acad Sci USA 2000, 97:9144鈥?149. CrossRef
    18. Kokoza VA, Ahmed AS, Wimmer E, Raikhel AS: Efficient transformation of the yellow fever mosquito Aedes aegypti using the pBac[3xP3-EGFP afm] piggy-Bac transposable element vector. / Insect Biochem Molec Biol 2001, 31:1137鈥?143. CrossRef
    19. Nirmala X, Marinotti O, Sandoval JM, Phin S, Gakhar S, Jasinskiene N, James AA: Functional characterization of the promoter of the vitellogenin gene, AsVg1, of the malaria vector, Anopheles stephensi. / Insect Biochem Mol Biol 2006, 36:694鈥?00. CrossRef
    20. Chen X, Marinotti O, Whitman L, Jasinskiene N, James AA: The Anopheles gambiae vitellogenin gene (VGT2) promoter directs persistent accumulation of a reporter gene product in transgenic Anopheles stephensi following multiple blood meals. / Am J Trop Med Hygiene 2007, 76:1118鈥?124.
    21. Isoe J, Hagedorn HH: Mosquito vitellogenin genes: Comparative sequence analysis, gene duplication, and the role of rare synonymous codon usage in regulating expression. / J Insect Sci 2007, 7:1鈥?9. CrossRef
    22. Provost-Javier KN, Chen S, Rasgon JL: Vitellogenin gene expression in autogenous Culex tarsalis . / Insect Mol Biol 2010, in press.
    23. Nei M, Rogozin IB, Piontkivska H: Purifying selection and birth-and-death evolution in the ubiquitin gene family. / Proc Natl Acad Sci USA 2000, 97:10866鈥?0871. CrossRef
    24. Piontkivska H, Rooney AP, Nei M: Purifying selection and birth-and-death evolution in the histone H4 gene family. / Mol Biol Evol 2002, 19:689鈥?97.
    25. Nei M, Rooney AP: Concerted and birth-and-death evolution of multigene families. / Annu Rev Genet 2005, 39:121鈥?52. CrossRef
    26. Lee YS, Kim TH, Kang TW, Chung WH, Shin GS: WSPMaker: a web tool for calculating selection pressure in proteins and domains using window-sliding. / BMC Bioinformatics 2008,9(Suppl 12):S13. CrossRef
    27. Wen Y, Irwin DM: Mosaic evolution of ruminant stomach lysozyme genes. / Mol Phylogenet Evol 1999, 13:474鈥?82. CrossRef
    28. Sawyer S: Statistical tests for detecting gene conversion. / Mol Biol Evol 1989, 6:526鈥?38.
    29. Chen JM, Cooper DN, Chuzhanova N, Ferec C, Patrinos GP: Gene conversion: mechanisms, evolution and human disease. / Nat Rev Genet 2007, 8:762鈥?75. CrossRef
    30. Li WH: / Molecular Evolution. Sinauer Assocs: Sunderland, MA; 1999.
    31. Teshima KM, Innan H: The effect of gene conversion on the divergence between duplicated genes. / Genetics 2004, 166:1553鈥?560. CrossRef
    32. Romans PA: Unique organization and unexpected expression patterns of A. gambiae Vitellogenin genes. [http://www.anobase.org/embo_meeting/2005/abstracts/Romans.pdf] 2005.
    33. Spieth J, Denison K, Kirtland S, Cane J, Blumenthal T: The C. elegans vitellogenin genes: short sequence repeats in the promotor regions and homology to the vertebrate genes. / Nucleic Acids Res 1985, 13:5283鈥?295. CrossRef
    34. Tufail M, Bembenek J, Elgendy AM, Takeda M: Evidence for two vitellogenin-related genes in Leucophaea maderae: the protein primary structure and its processing. / Arch Insect Biochem Physiol 2007, 66:190鈥?03. CrossRef
    35. Mouchel N, Trichet V, Naimi BY, Le Pennec JP, Wollf J: Structure of a fish (Oncorhynchus mykiss) vitellogenin gene and its evolutionary implications. / Gene 1997, 197:147鈥?52. CrossRef
    36. Trichet V, Buisine N, Mouchel N, Mor谩n P, Pend谩s AM, Le Pennec JP, Wolff J: Genomic analysis of the vitellogenin locus in rainbow trout (Oncorhynchus mykiss) reveals a complex history of gene amplification and retroposon activity. / Mol Gen Genet 2000, 263:828鈥?7. CrossRef
    37. Buisine N, Trichet V, Wolff J: Complex evolution of vitellogenin genes in salmonid fishes. / Mol Genet Genomics 2002, 268:535鈥?42. CrossRef
    38. Braasch I, Salzburger W: In ovo omnia: diversification by duplication in fish and other vertebrates. / J Biol 2009, 8:25. CrossRef
    39. Babin PJ: Conservation of a vitellogenin gene cluster in oviparous vertebrates and identification of its traces in the platypus genome. / Gene 2008, 413:76鈥?2. CrossRef
    40. Finn RN, Kolarevic J, Kongshaug H, Nilsen F: Evolution and differential expression of a vertebrate vitellogenin gene cluster. / BMC Evol Biol 2009, 9:2. Forthcoming CrossRef
    41. Sugino RP, Innan H: Selection for more of the same product as a force to enhance concerted evolution of duplicated genes. / Trends Genet 2006, 2:642鈥?44. CrossRef
    42. Prince VE, Pickett FB: Splitting pairs: the diverging fates of duplicated genes. / Nat Rev Genet 2002, 3:827鈥?37. CrossRef
    43. Long M, Betran E, Thornton K, Wang W: The origin of new genes: glimpses from the young and old. / Nat Rev Genet 2003, 4:865鈥?75. CrossRef
    44. Amdam GV, Norberg K, Fondrk MK, Page RE: Reproductive ground plan may mediate colony-level selection effects on individual foraging behavior in honey bees. / Proc Natl Acad Sci USA 2004, 101:11350鈥?1355. CrossRef
    45. Guidugli KR, Nascimento AM, Amdam GV, Barchuk AR, Omholt S, Simoes ZLP, Hartfelder K: Vitellogenin regulates hormonal dynamics in worker caste of a eusocial insect. / FEBS Lett 2005, 579:4961鈥?965. CrossRef
    46. Nelson CM, Ihle KE, Fondrk MK, Page RE, Amdam GV: The vitellogenin gene has multiple coordinating effects on social organization. / PLoS Biol 2007, 5:e62. CrossRef
    47. Nakamura A, Yasuda K, Adachi H, Sakurai Y, Ishii N, Goto S: Vitellogenin-6 is a major carbonylated protein in aged nematode, Caenorhabditis elegans. / Biochem Biophys Res Comm 1999, 264:580鈥?83. CrossRef
    48. Seehuus SC, Norberg K, Gimsa U, Krekling T, Amdam GV: Reproductive protein protects sterile honey bee workers from oxidative stress. / Proc Natl Acad Sci USA 2006, 103:962鈥?67. CrossRef
    49. Li Z, Zhang S, Liu Q: Vitellogenin functions as a multivalent pattern recognition receptor with an opsonic activity. / PLoS ONE 2008, 3:e1940. CrossRef
    50. Chen S, Li XC: Transposable elements are enriched within or in close proximity to xenobiotic-metabolizing cytochrome P450 genes. / BMC Evol Biol 2007, 7:46. CrossRef
    51. Ronquist F, Huelsenbeck JP: MrBayes 3: Bayesian phylogenetic inference under mixed models. / Bioinformatics 2003, 19:1572鈥?574. CrossRef
    52. Guindon S, Gascuel O: A simple, fast, and accurate algorithm to estimate large phylogenies by maximum likelihood. / Syst Biol 2003, 52:696鈥?04. CrossRef
    53. Kumar S, Tamura K, Nei M: MEGA3:Integrated software for Molecular Evolutionary Genetics Analysis and sequence alignment. / Brief Bioinform 2004, 5:150鈥?63. CrossRef
  • 作者单位:Song Chen (1)
    Jennifer S Armistead (1)
    Katie N Provost-Javier (1)
    Joyce M Sakamoto (2)
    Jason L Rasgon (1) (3)

    1. The W. Harry Feinstone Department of Molecular Microbiology and Immunology, Bloomberg School of Public Health, Johns Hopkins University, 21205, Baltimore, MD, USA
    2. The Institute for Genome Sciences, University of Maryland School of Medicine, 21201, Baltimore, MD, USA
    3. The Johns Hopkins Malaria Research Institute, Bloomberg School of Public Health, Johns Hopkins University, 21205, Baltimore, MD, USA
文摘
Background Mosquito vitellogenin (Vtg) genes belong to a small multiple gene family that encodes the major yolk protein precursors required for egg production. Multiple Vtg genes have been cloned and characterized from several mosquito species, but their origin and molecular evolution are poorly understood. Results Here we used in silico and molecular cloning techniques to identify and characterize the evolution of the Vtg gene family from the genera Culex, Aedes/Ochlerotatus, and Anopheles. We identified the probable ancestral Vtg gene among different mosquito species by its conserved association with a novel gene approximately one kilobase upstream of the start codon. Phylogenetic analysis indicated that the Vtg gene family arose by duplication events, but that the pattern of duplication was different in each mosquito genera. Signatures of purifying selection were detected in Culex, Aedes and Anopheles. Gene conversion is a major driver of concerted evolution in Culex, while unequal crossover is likely the major driver of concerted evolution in Anopheles. In Aedes, smaller fragments have undergone gene conversion events. Conclusions The study shows concerted evolution and purifying selection shaped the evolution of mosquito Vtg genes following gene duplication. Additionally, similar evolutionary patterns were observed in the Vtg genes from other invertebrate and vertebrate organisms, suggesting that duplication, concerted evolution and purifying selection may be the major evolutionary forces driving Vtg gene evolution across highly divergent taxa.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700