用户名: 密码: 验证码:
Glucooligosaccharide production by Leuconostoc mesenteroides fermentation with efficient pH control, using a calcium hydroxide-sucrose solution
详细信息    查看全文
  • 作者:Sun Lee ; Nguyen Thi Thanh Hanh ; Jae-Young Cho…
  • 关键词:glucansucrase ; Leuconostoc mesenteroides ; glucooligosaccharides ; calcium hydroxide
  • 刊名:Biotechnology and Bioprocess Engineering
  • 出版年:2016
  • 出版时间:January 2016
  • 年:2016
  • 卷:21
  • 期:1
  • 页码:39-45
  • 全文大小:298 KB
  • 参考文献:1.Nguyen, T. T. H., Y. S. Seo, J. Y. Cho, S. Lee, G. J. Kim, J. W. Yoon, S. H. Ahn, K. H. Hwang, J. S. Park, T. S. Jang, and D. Kim (2015) Synthesis of oligosaccharide-containing orange juice using glucansucrase. Biotechnol. Bioproc. Eng. 20: 447–452.CrossRef
    2.Oku, T. (1996) Oligosaccharides with beneficial health effects: A Japanese perspective. Nutr. Rev. 54: S59–66.CrossRef
    3.Manning, T. S. and G. R. Gibson (2004) Microbial-gut interactions in health and disease. Prebiotics. Best Pract. Res. Clin. Gastroenterol. 18: 287–298.CrossRef
    4.Monchois, V., R. M. Willemot, and P. Monsan (1999) Glucansucrases: Mechanism of action and structure–function relationships. FEMS Microbiol. Rev. 23: 131–151.CrossRef
    5.Ngo, D. N., M. M. Kim, and S. K. Kim (2008) Chitin oligosaccharides inhibit oxidative stress in live cells. Carbohyd. Polym. 74: 228–234.CrossRef
    6.Marionneau, S., A. Cailleau-Thomas, J. Rocher, B. Le Moullac-Vaidye, N. Ruvoen, M. Clement, and J. Le Pendu (2001) ABH and Lewis histo-blood group antigens, a model for the meaning of oligosaccharide diversity in the face of a changing world. Biochimie 83: 565–573.CrossRef
    7.Kang, H. K., T. T. H. Nguyen, H. N. Jeong, M. E. Park, and D. Kim (2014) Molecular cloning and characterization of a novel glucansucrase from Leuconostoc mesenteroides subsp. mesenteroides LM34. Biotechnol. Bioproc. Eng. 19: 605–612.CrossRef
    8.Robyt, J. F. and T. F. Walseth (1978) The mechanism of acceptor reactions of Leuconostoc mesenteroides B-512F dextransucrase. Carbohyd. Res. 61: 433–445.CrossRef
    9.Cote, G. L. and T. D. Leathers (2005) A method for surveying and classifying Leuconostoc spp. glucansucrases according to strain-dependent acceptor product patterns. J. Ind. Microbiol. Biotechnol. 32: 53–60.CrossRef
    10.Holt, S. M., C. M. Miller-Fosmore, and G. L. Cote (2005) Growth of various intestinal bacteria on alternansucrase-derived oligosaccharides. Lett. Appl. Microbiol. 40: 385–390.CrossRef
    11.Moon, Y. H., L. Madsen, C.-H. Chung, D. Kim, and D. F. Day (2014) Lime application for the efficient production of nutraceutical glucooligosaccharides from Leuconostoc mesenteroides NRRL B-742 (ATCC13146). J. Ind. Microbiol. Biotechnol. 42: 279–285.CrossRef
    12.Yoon, S.-H., R. Mukerjea, and J. F. Robyt (2003) Specificity of yeast (Saccharomyces cerevisiae) in removing carbohydrates by fermentation. Carbohyd. Res. 338: 1127–1132.CrossRef
    13.Moore, R., G. Richards, and A. Story (2008) Electrical conductivity as an indicator of water chemistry and hydrologic process. Stream. Water. Manag. Bull. 11: 25–29.
    14.Nguyen, T. T., J. Y. Cho, Y. S. Seo, H. J. Woo, H. K. Kim, G. J. Kim, D. Y. Jhon, and D. Kim (2014) Production of a low calorie mandarin juice by enzymatic conversion of constituent sugars to oligosaccharides and prevention of insoluble glucan formation. Biotechnol. Lett. 37: 711–716.CrossRef
    15.Kang, H. K., A. Kimura, and D. Kim (2011) Bioengineering of Leuconostoc mesenteroides glucansucrases that gives selected bond formation for glucan synthesis and/or acceptor-product synthesis. J. Agr. Food Chem. 59: 4148–4155.CrossRef
    16.Ziar, H., P. Gérard, and A. Riazi (2014) Effect of prebiotic carbohydrates on growth, bile survival and cholesterol uptake abilities of dairy-related bacteria. J. Sci. Food Agr. 94: 1184–1190.CrossRef
    17.Menezes, E. W., F. Grande, E. B. Giuntini, T. V. Lopes, M. C. Dan, S. B. Prado, B. D. Franco, U. R. Charrondière, and F. M. Lajolo (2015) Impact of dietary fiber energy on the calculation of food total energy value in the Brazilian Food Composition Database. Food Chem. 193: 128–133CrossRef
    18.U.S Food and Drug Administration, Submission of manuscript. http://​FDA.​gov
    19.da Silva, I. M., M. C. Rabelo, and S. Rodrigues (2014) Cashew juice containing prebiotic oligosaccharides. J. Food Sci. Technol. 51: 2078–2084.CrossRef
    20.Chung, C.-H. (2002) A potential nutraceutical from Leuconostoc mesenteroides B-742 (ATCC 13146); Production and Properties. Ph. D. Thesis. University of Lousiana, LA, USA.
    21.Patel, S., D. Kothari, and A. Goyal (2011) Purification and characterization of an extracellular dextransucrase from Pediococcus pentosaceus isolated from the soil of North East India. Food Technol. Biotech. 49: 297–303.
    22.Seo, E. S., D. Kim, J. F. Robyt, D. F. Day, D. W. Kim, H. J. Park, and H. J. Park (2004) Modified oligosaccharides as potential dental plaque control materials. Biotechnol. Prog. 20: 1550–1554.CrossRef
    23.Chung, C. and D. Day (2002) Glucooligosaccharides from Leuconostoc mesenteroides B-742 (ATCC 13146): A potential prebiotic. J. Ind. Microbiol. Biotechnol. 29: 196–199.CrossRef
    24.Mullie, P., A. Koechlin, M. Boniol, P. Autier, and P. Boyle (2015) Relation between breast cancer and high glycemic index or glycemic load: A meta-analysis of prospective cohort studies. Crit. Rev. Food Sci. Nutr. 56: 152–159.CrossRef
    25.Wang, S., J. Wang, H. Mou, B. Luo, and X. Jiang (2015) Inhibition of Adhesion of Intestinal Pathogens (Escherichia coli, Vibrio cholerae, Campylobacter jejuni, and Salmonella Typhimurium) by Common Oligosaccharides. Foodborne Pathog. Dis. 12: 360–365.CrossRef
    26.Bharti, S. K., S. Krishnan, A. Kumar, A. K. Gupta, A. K. Ghosh, and A. Kumar (2014) Mechanism-based antidiabetic activity of Fructo-and isomalto-oligosaccharides: Validation by in vivo, in silico and in vitro interaction potential. Proc. Biochem. 50: 317–327.CrossRef
    27.Andrikopoulos, S., A. R. Blair, N. Deluca, B. C. Fam, and J. Proietto (2008) Evaluating the glucose tolerance test in mice. Am. J. Physiol-Endoc. M. 295: e1323–E1332.
    28.Ludwig, D. S. (2002) The glycemic index: Physiological mechanisms relating to obesity, diabetes, and cardiovascular disease. J. Am Med. Assoc. 287: 2414–2423CrossRef
    29.S.U.G.I.R Datafiles of Sydney University Glycemic Index Database, Submission of manuscript. http://​glycemicindex.​com
    30.Chao, T., Z. PeiNa, Q. LingYu, X. Lin, J. ZhangJun, and L. XiuTing (2014) Progress of research and application in food industry of functional oligosaccharides. J. Food Safety Quality. 5: 123–130.
  • 作者单位:Sun Lee (1) (2)
    Nguyen Thi Thanh Hanh (1)
    Jae-Young Cho (1)
    Ji Youn Kim (5)
    Young Hwan Moon (3)
    Su-Cheong Yeom (1) (5)
    Geun-Joong Kim (4)
    Doman Kim (1) (5)

    1. Institutes of Green Bio Sciences & Technology, Seoul National University, Gangwon-do, 232-916, Korea
    2. School of Biological Sciences and Technology, Chonnam National University, Gwangju, 500-757, Korea
    5. Graduate School of International Agricultural Technology, Gangwon-do, 232-916, Korea
    3. Audubon Sugar Institute, Louisiana State University Agricultural Center, Saint Gabriel, LA, 70776, USA
    4. Department of Biological Sciences, College of Natural Sciences, Chonnam National University, Gwangju, 500-757, Korea
  • 刊物类别:Chemistry and Materials Science
  • 刊物主题:Chemistry
    Biotechnology
  • 出版者:The Korean Society for Biotechnology and Bioengineering
  • ISSN:1976-3816
文摘
95.3% of the sucrose in a feed batch fermentation (300 g/L) was hydrolyzed by Leuconostoc mesenteroides subp. mesenteroides NRRL B-23188 glucansucrase. Further, the glucose of sucrose formed glucooligosaccharides (GOS) of degree of polymerization (DP) over 2, together with 91.6% of the maltose (200 g/L). Lime saccharate (lime sucrate) was used to control the pH during fermentation. The GOS products had DP between 2 and 7. When Streptococcus mutans mutansucrase (0.1 U/mL) reacted with 0.1% sucrose, addition of 0.1 ~ 10% GOS to the mutansucrase reaction digest resulted in a 56 ~ 90% reduction of mutan formation. GOS also reduced E. coli (72.2%) and Salmonella sp. (over 40.0%) growth, when 2.5% GOS was used as a single carbon source, compared to growth using glucose. The calculated glycemic index and glycemic load of GOS was 8 and 1, respectively, based on a 10 g carbohydrate serving. GOS was calculated to have 2.43 kcal/g. After a glucose tolerance test was performed using C57BL/6 mice, we found that mice treated with GOS showed a 59.4% lower increase in plasma glucose than those treated with maltose.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700