用户名: 密码: 验证码:
Fluorescent aptamer-based assay for thrombin with large signal amplification using peroxidase mimetics
详细信息    查看全文
  • 作者:Guang-Li Wang ; Xue-Lian Hu ; Xiu-Ming Wu ; Yu-Ming Dong ; Zai-Jun Li
  • 关键词:CdTe quantum dots ; G ; quadruplex ; Inner filter effect ; Photoinduced electron transfer ; Platinum nanoparticles
  • 刊名:Microchimica Acta
  • 出版年:2016
  • 出版时间:February 2016
  • 年:2016
  • 卷:183
  • 期:2
  • 页码:765-771
  • 全文大小:974 KB
  • 参考文献:1.Davie EW, Fujikawa K, Kisiel W (1991) The coagulation cascade: initiation, maintenance, and regulation. Biochem 30:10363–10370CrossRef
    2.Sun AL, Jia FC, Zhang YF, Wang XN (2014) Gold nanocluster-encapsulated glucoamylase as a biolabel for sensitive detection of thrombin with glucometer readout. Microchim Acta 182:1169–1175CrossRef
    3.Ellington AD, Szostak JW (1990) In vitro selection of RNA molecules that bind specific ligands. Nat 346:818–822CrossRef
    4.Zhang HF, Shuang SM, Sun LL, Chen AJ, Qin Y, Dong C (2014) Label-free aptasensor for thrombin using a glassy carbon electrode modified with a graphene-porphyrin composite. Microchim Acta 181:189–196CrossRef
    5.Xu ZC, Huang XY, Dong CQ, Ren JC (2014) Fluorescence correlation spectroscopy of gold nanoparticles, and its application to an aptamer-based homogeneous thrombin assay. Microchim Acta 181:723–730CrossRef
    6.Li YB, Ling LS (2015) Aptamer-based fluorescent solid-phase thrombin assay using a silver-coated glass substrate and signal amplification by glucose oxidase. Microchim Acta 182:1849–1854
    7.Huang HP, Zhu JJ (2009) DNA aptamer-based QDs electrochemiluminescence biosensor for the detection of thrombin. Biosens Bioelectron 25:927–930CrossRef
    8.Cho HS, Baker BR, Wachsmann-Hogiu S, Pagba CV, Laurence TA, Lane SM, Lee LP, Tok JBH (2008) Aptamer-based SERRS sensor for thrombin detection. Nano Lett 8:4386–4390CrossRef
    9.Lin ZH, Pan D, Hu TY, Liu ZP (2015) Su XG (2015) a near-infrared fluorescent bioassay for thrombin using aptamer-modified CuInS2 quantum dots. Microchim Acta 182:1933–1939CrossRef
    10.Cao YL, Shi S, Wang LL, Yao JL, Yao TM (2014) Ultrasensitive fluorescence detection of heparin based on quantum dots and a functional ruthenium polypyridyl complex. Biosens Bioelectron 55:174–179CrossRef
    11.Wei X, Zhou ZP, Hao TF, Xu YP, Li HJ, Lu K, Dai JD, Zheng XD, Gao L, Wang JX, Yan YS, Zhu YZ (2015) Specific recognition and fluorescent determination of aspirin by using core-shell CdTe quantum dot-imprinted polymers. Microchim Acta 182:1527–1534CrossRef
    12.Zhang HY, Feng GQ, Guo Y, Zhou DJ (2013) Robust and specific ratiometric biosensing using a copper-free clicked quantum dot–DNA aptamer sensor. Nanoscale 5:10307–10315CrossRef
    13.Zhang L, Lei JP, Liu L, Li CF, Ju HX (2013) Self-assembled DNA hydrogel as switchable material for aptamer-based fluorescent detection of protein. Anal Chem 85:11077–11082CrossRef
    14.Sharon E, Freeman R, Willner I (2010) CdSe/ZnS quantum dots-G-quadruplex/hemin hybrids as optical DNA sensors and aptasensors. Anal Chem 82:7073–7077CrossRef
    15.Wang GL, Hu XL, Wu XM, Li ZJ (2014) Quantum dots-based glucose sensing through fluorescence quenching by bienzyme-catalyzed chromogenic substrate oxidation. Sens Actuators: B 205:61–66CrossRef
    16.Guo YH, Yao WR, Xie YF, Zhou XD, Hu JM, Pei RJ (2015) Logic gates based on G-quadruplexes: principles and sensor applications. Microchim Acta. doi:10.​1007/​s00604-015-1633-2
    17.Kong DM, Xu J, Shen HX (2010) Positive effects of ATP on G-quadruplex-hemin DNAzyme-mediated reactions. Anal Chem 82:6148–6153CrossRef
    18.Zong C, Wu J, Liu MM, Yang LL, Liu L, Yan F, Ju HX (2014) Proximity hybridization-triggered signal switch for homogeneous chemiluminescent bioanalysis. Anal Chem 86:5573–5578CrossRef
    19.Xue M, Wang X, Wang H, Tang B (2011) The preparation of glutathione-capped CdTe quantum dots and their use in imaging of cells. Talanta 83:1680–1686CrossRef
    20.Zhang S, Shao YY, Yin GP, Lin YH (2009) Stabilization of platinum nanoparticle electrocatalysts for oxygen reduction using poly (diallyldimethylammonium chloride). J Mater Chem 19:7995–8001CrossRef
    21.Wu FX, Lewis JW, Kliger DS, Zhang JZ (2003) Unusual excitation intensity dependence of fluorescence of CdTe nanoparticles. J Chem Phys 118:12–16CrossRef
    22.Yu WW, Qu LH, Guo WZ, Peng XG (2003) Experimental determination of the extinction coefficient of CdTe, CdSe, and CdS nanocrystals. Chem Mater 15:2854–2860CrossRef
    23.Ge PY, Zhao W, Du Y, Xu JJ, Chen HY (2009) A novel hemin-based organic phase artificial enzyme electrode and its application in different hydrophobicity organic solvents. Biosens Bioelectron 24:2002–2007CrossRef
    24.Xiao Y, Pavlov V, Gill R, Bourenko T, Willner I (2004) Lighting up biochemiluminescence by the surface self-assembly of DNA-hemin complexes. Chembiochem 5:374–379CrossRef
    25.Cai K, Lv ZC, Chen K, Huang L, Wang J, Shao F, Wang YJ, Han HY (2013) Aqueous synthesis of porous platinum nanotubes at room temperature and their intrinsic peroxidase-like activity. Chem Commun 49:6024–6026CrossRef
    26.Dong YQ, Chi YW, Lin XM, Zheng LY, Chen LC, Chen GN (2011) Nano-sized platinum as a mimic of uricase catalyzing the oxidative degradation of uric acid. Phys Chem Chem Phys 13:6319–6324CrossRef
    27.García-Molina MDM, Muñoz JLM, Martinez-Ortiz F, Martinez JR, García-Ruiz PA, Rodriguez-López JN, García-Cánovas F (2014) Tyrosinase-catalyzed hydroxylation of hydroquinone, a depigmenting agent, to hydroxyhydroquinone: a kinetic study. Bioorg Med Chem 22:3360–3369CrossRef
    28.Deng C, Chen J, Nie Z, Wang M, Chu X, Chen X, Xiao X, Lei C, Yao S (2009) Impedimetric aptasensor with femtomolar sensitivity based on the enlargement of surface-charged gold nanoparticles. Anal Chem 81:739–745CrossRef
    29.Xie SB, Chai YQ, Yuan R, Bai LJ, Yuan YL, Wang Y (2012) A dual-amplification aptasensor for highly sensitive detection of thrombin based on the functionalized graphene-Pd nanoparticles composites and the hemin/G-quadruplex. Anal Chim Acta 755:46–53CrossRef
    30.Xiao LJ, Chai YQ, Yuan R, Wang HJ, Bai LJ (2014) Highly enhanced electrochemiluminescence based on pseudo triple-enzyme cascade catalysis and in situ generation of co-reactant for thrombin detection. Analyst 139:1030–1036CrossRef
    31.Bang JH, Kamat PV (2009) A tale of two semiconductor nanocrystals: CdSe and CdTe. ACS Nano 3:1467–1476CrossRef
    32.Zhang LB, Zhu JB, Guo SJ, Li T, Li J, Wang EK (2013) Photoinduced electron transfer of DNA/Ag nanoclusters modulated by G-quadruplex/hemin complex for the construction of versatile biosensors. J Am Chem Soc 135:2403–2406CrossRef
    33.Lakowicz JR (2006) Principles of fluorescence spectroscopy, 3rd edn. Springer, BaltimoreCrossRef
    34.Wang GL, Jiao HJ, Liu KL, Wu XM, Dong YM, Li ZJ, Zhang C (2014) A novel strategy for the construction of photoelectrochemical sensors based on quantum dots and electron acceptor: the case of dopamine detection. Electrochem Commun 41:47–50CrossRef
  • 作者单位:Guang-Li Wang (1) (2)
    Xue-Lian Hu (1)
    Xiu-Ming Wu (1)
    Yu-Ming Dong (1)
    Zai-Jun Li (1)

    1. The Key Laboratory of Food Colloids and Biotechnology, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Wuxi, 214122, People’s Republic China
    2. State Key Laboratory of Analytical Chemistry for Life Science, Nanjing University, Nanjing, 210093, People’s Republic China
  • 刊物类别:Chemistry and Materials Science
  • 刊物主题:Chemistry
    Analytical Chemistry
    Inorganic Chemistry
    Physical Chemistry
    Characterization and Evaluation Materials
    Monitoring, Environmental Analysis and Environmental Ecotoxicology
  • 出版者:Springer Wien
  • ISSN:1436-5073
文摘
This article describes an aptamer-based thrombin assay using a hemin-based peroxidase mimetic for signal amplification. Thrombin is recognized by an immobilized primary aptamer (G1-quadruplex). The G1-quadruplex/hemin complex formed quenches the fluorescence of CdTe quantum dots (QDs) due to photoinduced electron transfer (PET). In the next step, thrombin is associated with a secondary aptamer (G2-quadruplex) consisting of Pt nanoparticles (NPs), G2-quadruplex and hemin to form a sandwich structure. Both the G1-quadruplex/hemin complex and the Pt NPs/G2-quadruplex/hemin complex associated with thrombin act as enzyme mimetics and catalyze the oxidation of hydroquinone by H2O2 to form 2-hydroxy-p-benzoquinone (HPB). The HPB produced quenches the fluorescence of the CdTe QDs via a PET and an inner filter effect, thus causing large signal amplification. The effects were exploited to design a highly sensitive and selective thrombin assay. Under optimized conditions, a linear fluorescence response is achieved in the 0.05 pmol·L−1 to 10 nmol·L−1 concentration range, with a lower detection limit of 15 fmol·L−1. This approach, in our perception, represents a promising platform for sensitive detection of biomolecules for which appropriate aptamers can be found.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700