用户名: 密码: 验证码:
Synthesis of Zn-doped colloidal SiO2 abrasives and their applications in sapphire chemical mechanical polishing slurry
详细信息    查看全文
  • 作者:Hong Lei ; LiQin Huang ; Qian Gu
  • 刊名:Journal of Materials Science: Materials in Electronics
  • 出版年:2017
  • 出版时间:January 2017
  • 年:2017
  • 卷:28
  • 期:2
  • 页码:1229-1237
  • 全文大小:
  • 刊物类别:Chemistry and Materials Science
  • 刊物主题:Optical and Electronic Materials; Characterization and Evaluation of Materials;
  • 出版者:Springer US
  • ISSN:1573-482X
  • 卷排序:28
文摘
In this paper, Zn-doped colloidal SiO2 composite abrasives were synthesized by seed-induced growth method and used to polish sapphire substrates. Time of flight secondary ion mass spectroscopy and scanning electron microscopy analyses show that element zinc has been doped into colloidal SiO2, and the prepared Zn-doped colloidal SiO2 composite abrasives are all ideal spherical and have good dispersibility. Chemical mechanical polishing (CMP) performances of Zn-doped colloidal SiO2 composite abrasives on sapphire substrates were investigated using UNIPOL-1502 CMP equipment. Experimental results show that, under the same testing conditions, the surfaces of sapphire polished by Zn-doped colloidal SiO2 composite abrasives exhibit lower root mean square roughness and higher material removal rate (MRR) than those of pure colloidal SiO2 abrasive. Especially, the composite abrasive shows the maximum MRR at 1.0 wt% Zn(OH)2 content. Furthermore, the acting mechanism of Zn-doped colloidal SiO2 composite abrasives in sapphire CMP was analyzed by X-ray photoelectron spectroscopy, and analytical results show that element zinc in composite abrasives can react with sapphire substrate to form aluminum zincate (Al2ZnO4) during CMP, which promotes the chemical effect in CMP and leads to the improvement of MRR.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700