用户名: 密码: 验证码:
The neuropeptide complement of the marine annelid Platynereis dumerilii
详细信息    查看全文
  • 作者:Markus Conzelmann (6)
    Elizabeth A Williams (6)
    Karsten Krug (7)
    Mirita Franz-Wachtel (7)
    Boris Macek (7)
    Gáspár Jékely (6)
  • 关键词:(3-0) ; Transcriptomics ; Peptidomics ; Lophotrochozoa ; Neurobiology ; Diuretic hormone ; Allatostatin ; Allatotropin ; Neuroendocrinology ; Proenkephalin
  • 刊名:BMC Genomics
  • 出版年:2013
  • 出版时间:December 2013
  • 年:2013
  • 卷:14
  • 期:1
  • 全文大小:2,377 KB
  • 参考文献:1. Liu F, Baggerman G, Schoofs L, Wets G: The construction of a bioactive peptide database in metazoa. / J Proteome Res 2008, 7:4119-131. CrossRef
    2. Watanabe H, Fujisawa T, Holstein TW: Cnidarians and the evolutionary origin of the nervous system. / Dev Growth Differ 2009, 51:167-83. CrossRef
    3. Srivastava M, Simakov O, Chapman J, Fahey B, Gauthier ME, Mitros T, Richards GS, Conaco C, Dacre M, Hellsten U, Larroux C, Putnam NH, Stanke M, Adamska M, Darling A, Degnan SM, Oakley TH, Plachetzki DC, Zhai Y, Adamski M, Calcino A, Cummins SF, Goodstein DM, Harris C, Jackson DJ, Leys SP, Shu S, Woodcroft BJ, Vervoort M, Kosik KS, / et al.: The Amphimedon queenslandica genome and the evolution of animal complexity. / Nature 2010, 466:720-26. CrossRef
    4. Attenborough RM, Hayward DC, Kitahara MV, Miller DJ, Ball EE: A “neural-enzyme in nonbilaterian animals and algae: preneural origins for peptidylglycine alpha-amidating monooxygenase. / Mol Biol Evol 2012, 29:3095-109. CrossRef
    5. Hook V, Funkelstein L, Lu D, Bark S, Wegrzyn J, Hwang SR: Proteases for processing proneuropeptides into peptide neurotransmitters and hormones. / Annu Rev Pharmacol Toxicol 2008, 48:393-23. CrossRef
    6. Eipper BA, Stoffers DA, Mains RE: The biosynthesis of neuropeptides: peptide alpha-amidation. / Annu Rev Neurosci 1992, 15:57-5. CrossRef
    7. Marks N, Stern F, Kastin AJ: Biodegradation of α-MSH and derived peptides by rat brain extracts, and by rat and human serum. / Brain Res Bull 1976, 1:591-93. CrossRef
    8. In Y, Ono H, Ishida T: Structural studies on C-amidated amino acids and peptides: function of amide group in molecular association in crystal structures of Val-Gly-NH2, Ser-Phe-NH2, Gly-Tyr-NH2 and Pro-Tyr-NH2 hydrochloride salts. / Chem Pharm Bull 2002, 50:571-77. CrossRef
    9. Edison AS, Espinoza E, Zachariah C: Conformational ensembles: the role of neuropeptide structures in receptor binding. / J Neurosci 1999, 19:6318-326.
    10. Merkler DJ: C-terminal amidated peptides: production by the in vitro enzymatic amidation of glycine-extended peptides and the importance of the amide to bioactivity. / Enzyme Microb Technol 1994, 16:450-56. CrossRef
    11. Prigge ST, Mains RE, Eipper BA, Amzel LM: New insights into copper monooxygenases and peptide amidation: structure, mechanism and function. / Cell Mol Life Sci 2000, 57:1236-259. CrossRef
    12. Wegener C, Gorbashov A: Molecular evolution of neuropeptides in the genus Drosophila. / Genome Biol 2008, 9:R131. CrossRef
    13. Conzelmann M, Jékely G: Antibodies against conserved amidated neuropeptide epitopes enrich the comparative neurobiology toolbox. / Evodevo 2012, 3:23. CrossRef
    14. Liu F, Baggerman G, Schoofs L, Wets G: Uncovering conserved patterns in bioactive peptides in Metazoa. / Peptides 2006, 27:3137-153. CrossRef
    15. Hewes RS: Neuropeptides and Neuropeptide receptors in the Drosophila melanogaster genome. / Genome Res 2001, 11:1126-142. CrossRef
    16. Cho HJ, Acharjee S, Moon MJ, Oh DY, Vaudry H, Kwon HB, Seong JY: Molecular evolution of neuropeptide receptors with regard to maintaining high affinity to their authentic ligands. / Gen Comp Endocrinol 2007, 153:98-07. CrossRef
    17. Kim D-K, Cho EB, Moon MJ, Park S, Hwang J-I, Do Rego J-L, Vaudry H, Seong JY: Molecular coevolution of neuropeptides gonadotropin-releasing hormone and kisspeptin with their cognate G protein-coupled receptors. / Front Neurosci 2012, 6:3.
    18. Jurenka R, Nusawardani T: The pyrokinin/pheromone biosynthesis-activating neuropeptide (PBAN) family of peptides and their receptors in Insecta: evolutionary trace indicates potential receptor ligand-binding domains. / Insect Mol Biol 2011, 20:323-34. CrossRef
    19. Jékely G: Global view of the evolution and diversity of metazoan neuropeptide signaling. / Proc Natl Acad Sci U S A 2013, 110:8702-707. CrossRef
    20. Mirabeau O, Joly J-S: Molecular evolution of peptidergic signaling systems in bilaterians. / Proc Natl Acad Sci U S A 2013, 110:E2028-E2037. CrossRef
    21. Schoofs L, Holman GM, Hayes TK, Nachman RJ, De Loof A: Isolation, identification and synthesis of locusta myoinhibiting peptide (LOM-MIP), a novel biologically active neuropeptide from Locusta migratoria . / Regul Pept 1991, 36:111-19. CrossRef
    22. Meunier JC, Mollereau C, Toll L, Suaudeau C, Moisand C, Alvinerie P, Butour JL, Guillemot JC, Ferrara P, Monsarrat B: Isolation and structure of the endogenous agonist of opioid receptor-like ORL1 receptor. / Nature 1995, 377:532-35. CrossRef
    23. Reinscheid RK, Nothacker HP, Bourson A, Ardati A, Henningsen RA, Bunzow JR, Grandy DK, Langen H, Monsma FJ, Civelli O: Orphanin FQ: a neuropeptide that activates an opioid like G protein-coupled receptor. / Science 1995, 270:792-94. CrossRef
    24. Katafuchi T, Kikumoto K, Hamano K, Kangawa K, Matsuo H, Minamino N: Calcitonin receptor-stimulating peptide, a new member of the calcitonin gene-related peptide family. Its isolation from porcine brain, structure, tissue distribution, and biological activity. / J Biol Chem 2003, 278:12046-2054. CrossRef
    25. Veenstra JA: Neurohormones and neuropeptides encoded by the genome of Lottia gigantea , with reference to other mollusks and insects. / Gen Comp Endocrinol 2010, 167:86-03. CrossRef
    26. Nathoo AN, Moeller RA, Westlund BA, Hart AC: Identification of neuropeptide-like protein gene families in Caenorhabditis elegans and other species. / Proc Natl Acad Sci 2001, 98:14000-4005. CrossRef
    27. Hinuma S, Shintani Y, Fukusumi S, Iijima N, Matsumoto Y, Hosoya M, Fujii R, Watanabe T, Kikuchi K, Terao Y, Yano T, Yamamoto T, Kawamata Y, Habata Y, Asada M, Kitada C, Kurokawa T, Onda H, Nishimura O, Tanaka M, Ibata Y, Fujino M: New neuropeptides containing carboxy-terminal RFamide and their receptor in mammals. / Nat Cell Biol 2000, 2:703-08. CrossRef
    28. Conzelmann M, Offenburger S-L, Asadulina A, Keller T, Münch TA, Jékely G: Neuropeptides regulate swimming depth of Platynereis larvae. / Proc Natl Acad Sci U S A 2011, 108:E1174-E1183. CrossRef
    29. McVeigh P, Mair GR, Atkinson L, Ladurner P, Zamanian M, Novozhilova E, Marks NJ, Day TA, Maule AG: Discovery of multiple neuropeptide families in the phylum Platyhelminthes. / Int J Parasitol 2009, 39:1243-252. CrossRef
    30. Rowe ML, Elphick MR: The neuropeptide transcriptome of a model echinoderm, the sea urchin Strongylocentrotus purpuratus . / Gen Comp Endocrinol 2012, 179:331-44. CrossRef
    31. Hummon AB, Amare A, Sweedler JV: Discovering new invertebrate neuropeptides using mass spectrometry. / Mass Spectrom Rev 2006, 25:77-8. CrossRef
    32. Boonen K, Landuyt B, Baggerman G, Husson SJ, Huybrechts J, Schoofs L: Peptidomics: the integrated approach of MS, hyphenated techniques and bioinformatics for neuropeptide analysis. / J Sep Sci 2008, 31:427-45. CrossRef
    33. Menschaert G, Vandekerckhove TTM, Baggerman G, Schoofs L, Luyten W, Criekinge WV: Peptidomics coming of Age: a review of contributions from a bioinformatics angle. / J Proteome Res 2010, 9:2051-061. CrossRef
    34. Collins JJ, Hou X, Romanova EV, Lambrus BG, Miller CM, Saberi A, Sweedler JV, Newmark PA: Genome-wide analyses reveal a role for peptide hormones in planarian germline development. / Plos Biol 2010, 8:e1000509. CrossRef
    35. Li B, Predel R, Neupert S, Hauser F, Tanaka Y, Cazzamali G, Williamson M, Arakane Y, Verleyen P, Schoofs L, Schachtner J, Grimmelikhuijzen CJP, Park Y: Genomics, transcriptomics, and peptidomics of neuropeptides and protein hormones in the red flour beetle Tribolium castaneum . / Genome Res 2007, 18:113-22. CrossRef
    36. Hauser F, Neupert S, Williamson M, Predel R, Tanaka Y, Grimmelikhuijzen CJ: Genomics and peptidomics of neuropeptides and protein hormones present in the parasitic wasp Nasonia vitripennis . / J Proteome Res 2010, 9:5296-310. CrossRef
    37. Dircksen H, Neupert S, Predel R, Verleyen P, Huybrechts J, Strauss J, Hauser F, Stafflinger E, Schneider M, Pauwels K, Schoofs L, Grimmelikhuijzen CJP: Genomics, transcriptomics, and peptidomics of Daphnia pulex neuropeptides and protein hormones. / J Proteome Res 2011, 10:4478-504. CrossRef
    38. Xie F, London SE, Southey BR, Annangudi SP, Amare A, Rodriguez-Zas SL, Clayton DF, Sweedler JV: The zebra finch neuropeptidome: prediction, detection and expression. / BMC Biol 2010, 8:28. CrossRef
    39. Oumi T, Ukena K, Matsushima O, Ikeda T, Fujita T, Minakata H, Nomoto K: Annetocin - an oxytocin-related peptide isolated from the earthworm, Eisenia foetida . / Biochem Biophys Res Commun 1994, 198:393-99. CrossRef
    40. Veenstra JA: Neuropeptide evolution: neurohormones and neuropeptides predicted from the genomes of Capitella teleta and Helobdella robusta . / Gen Comp Endocrinol 2011, 171:160-75. CrossRef
    41. Salzet M, Bulet P, Wattez C, Malecha J: FMRFamide-related peptides in the sex segmental ganglia of the Pharyngobdellid leech Erpobdella octoculata . Identification and involvement in the control of hydric balance. / Eur J Biochem 1994, 221:269-75. CrossRef
    42. Evans BD, Pohl J, Kartsonis NA, Calabrese RL: Identification of RFamide neuropeptides in the medicinal leech. / Peptides 1991, 12:897-08. CrossRef
    43. Simon TW, Schmidt J, Calabrese RL: Modulation of high-threshold transmission between heart interneurons of the medicinal leech by FMRF-NH2. / J Neurophysiol 1994, 71:454-66.
    44. Díaz-Miranda L, de Motta GE, García-Arrarás JE: Monoamines and neuropeptides as transmitters in the sedentary polychaete Sabellastarte magnifica : Actions on the longitudinal muscle of the body wall. / J Exp Zool 1992, 263:54-7. CrossRef
    45. Krajniak KG, Greenberg MJ: The localization of FMRFamide in the nervous and somatic tissues of Nereis virens and its effects upon the isolated esophagus. / Comp Biochem Physiol 1992, 101:93-00.
    46. Ukena K, Oumi T, Matsushima O, Takahashi T, Muneoka Y, Fujita T, Minakata H, Nomoto K: Inhibitory pentapeptides isolated from the gut of the earthworm, Eisenia foetida . / Comp Biochem Physiol A Physiol 1996, 114:245-49. CrossRef
    47. O'Gara BA, Brown PL, Dlugosch D, Kandiel A, Ku JW, Geier JK, Henggeler NC, Abbasi A, Kounalakis N: Regulation of pharyngeal motility by FMRFamide and related peptides in the medicinal leech, Hirudo medicinalis . / Invert Neurosci 1999, 4:0041-053. CrossRef
    48. Herbert Z, Pollák E, Zougman A, Boros A, Kapan N, Molnár L: Identification of novel neuropeptides in the ventral nerve cord ganglia and their targets in an annelid worm, Eisenia fetida . / J Comp Neurol 2009, 514:415-32. CrossRef
    49. Matsushima O, Takahashi T, Morishita F, Fujimoto M, Ikeda T, Kubota I, Nose T, Miki W: Two S-Iamide Peptides, AKSGFVRIamide and VSSFVRIamide, Isolated from an Annelid, Perinereis vancaurica . / Biol Bull 2002, 184:216-22. CrossRef
    50. Jékely G, Colombelli J, Hausen H, Guy K, Stelzer E, Nédélec F, Arendt D: Mechanism of phototaxis in marine zooplankton. / Nature 2008, 456:395-99. CrossRef
    51. Minakata H, Fujita T, Kawano T, Nagahama T, Oumi T, Ukena K, Matsushima O, Muneoka Y, Nomoto K: The leech excitatory peptide, a member of the GGNG peptide family: isolation and comparison with the earthworm GGNG peptides. / FEBS Lett 1997, 410:437-42. CrossRef
    52. Matsushima O, Takahama H, Ono Y, Nagahama T, Morishita F, Furukawa Y, Iwakoshi-Ukena E, Hisada M, Takuwa-Kuroda K, Minakata H: A novel GGNG-related neuropeptide from the polychaete Perinereis vancaurica . / Peptides 2002, 23:1379-390. CrossRef
    53. Nagahama T, Ukena K, Oumi T, Morishita F, Furukawa Y, Matsushima O, Satake H, Takuwa K, Kawano T, Minakata H, Nomoto K: Localization of leech excitatory peptide, a member of the GGNG peptides, in the central nervous system of a leech ( Whitmania pigra ) by immunohistochemistry and in situ hybridization. / Cell Tissue Res 1999, 297:155-62. CrossRef
    54. Salzet M, Verger-Bocquet M, Vandenbulcke F, Van Minnen J: Leech egg-laying-like hormone: structure, neuronal distribution and phylogeny. / Brain Res Mol Brain Res 1997, 49:211-21. CrossRef
    55. Wang Y, Price DA, Sahley CL: Identification and characterization of a myomodulin-like peptide in the leech. / Peptides 1998, 19:487-93. CrossRef
    56. Tobin A-E, Calabrese RL: Myomodulin increases Ih and inhibits the Na/K pump to modulate bursting in leech heart interneurons. / J Neurophysiol 2005, 94:3938-950. CrossRef
    57. Takahashi T, Matsushima O, Morishita F: A myomodulin-CARP-related peptide isolated from a polychaete annelid, Perinereis vancaurica . / Zoolog Sci 1994, 11:33-8.
    58. Tessmar-Raible K, Raible F, Christodoulou F, Guy K, Rembold M, Hausen H, Arendt D: Conserved sensory-neurosecretory cell types in annelid and fish forebrain: insights into hypothalamus evolution. / Cell 2007, 129:1389-400. CrossRef
    59. Wagenaar DA, Hamilton MS, Huang T, Kristan WB, French KA: A hormone-activated central pattern generator for courtship. / Curr Biol 2010, 20:487-95. CrossRef
    60. Tsai PS, Zhang L: The emergence and loss of gonadotropin-releasing hormone in protostomes: orthology, phylogeny, structure, and function. / Biol Reprod 2008, 79:798-05. CrossRef
    61. Luis Quintanar J, Gutiérrez-García K, Castillo-Hernández L: The neuropeptide Gonadotropin-releasing hormone modifies the spontaneous muscular contraction in the earthworm: Eisenia foetida . / Invert Neurosci 2011, 11:113-16. CrossRef
    62. LeRoith D, Lesniak MA, Roth J: Insulin in Insects and Annelids. / Diabetes 1981, 30:70-6. CrossRef
    63. Díaz-Miranda L, Escalona De Motta G, Garc A-A, JE S: Localization of neuropeptides in the nervous system of the marine annelid Sabellastarte magnifica . / Cell Tissue Res 1991, 266:209-17. CrossRef
    64. Curry WJ, Fairweather I, Johnston CF, Halton DW, Buchanan KD: Immunocytochemical demonstration of vertebrate neuropeptides in the earthworm Lumbricus terrestris (Annelida, Oligochaeta). / Cell Tissue Res 1989, 257:577-86. CrossRef
    65. Conzelmann M, Williams EA, Tunaru S, Randel N, Shahidi R, Asadulina A, Berger J, Offermanns S, Jékely G: Conserved MIP receptor-ligand pair regulates Platynereis larval settlement. / Proc Natl Acad Sci U S A 2013, 110:8224-229. CrossRef
    66. Tomer R, Denes AS, Tessmar-Raible K, Arendt D: Profiling by image registration reveals common origin of annelid mushroom bodies and vertebrate pallium. / Cell 2010, 142:800-09. CrossRef
    67. Fischer AH, Henrich T, Arendt D: The normal development of Platynereis dumerilii (Nereididae, Annelida). / Front Zool 2010, 7:31. CrossRef
    68. Fischer A, Dorresteijn A: The polychaete Platynereis dumerilii (Annelida): a laboratory animal with spiralian cleavage, lifelong segment proliferation and a mixed benthic/pelagic life cycle. / Bioessays 2004, 26:314-25. CrossRef
    69. Petersen TN, Brunak S, Heijne Von G, Nielsen H: SignalP 4.0: discriminating signal peptides from transmembrane regions. / Nat Methods 2011, 8:785-86. CrossRef
    70. Mbikay M, Seidah NG, Chretien M: Neuroendocrine secretory protein 7B2: structure, expression and functions. / Biochem J 2001, 357:329-42. CrossRef
    71. Senatorov VV, Yang CR, Marcinkiewicz M, Chrétien M, Renaud LP: Depolarizing action of secretory granule protein 7B2 on Rat supraoptic neurosecretory neurons. / J Neuroendocrinol 1993, 5:533-36. CrossRef
    72. Rayne RC, O'Shea M: Reconstitution of adipokinetic hormone biosynthesis in vitro indicates steps in prohormone processing. / Eur J Biochem 1994, 219:781-89. CrossRef
    73. Frickey T, Lupas A: CLANS: a Java application for visualizing protein families based on pairwise similarity. / Bioinformatics 2004, 20:3702-704. CrossRef
    74. Baggerman G, Liu F, Wets G, Schoofs L: Bioinformatic analysis of peptide precursor proteins. / Ann N Y Acad Sci 2005, 1040:59-5. CrossRef
    75. Aravind L, Koonin EV: A colipase fold in the carboxy-terminal domain of the Wnt antagonists - the Dickkopfs. / Curr Biol 1998, 8:R477-R478. CrossRef
    76. Dunn JG, Foo CK, Belletier NG, Gavis ER, Weissman JS: Ribosome profiling reveals pervasive and regulated stop codon readthrough in Drosophila melanogaster . / eLife 2013, 2:e01179. CrossRef
    77. Tessmar-Raible K, Arendt D: Emerging systems: between vertebrates and arthropods, the Lophotrochozoa. / Curr Opin Genet Dev 2003, 13:331-40. CrossRef
    78. Robb SMC, Ross E, Sánchez Alvarado A: SmedGD: the Schmidtea mediterranea genome database. / Nucleic Acids Res 2008, 36:D599-D606. CrossRef
    79. Backfisch B, Veedin Rajan VB, Fischer RM, Lohs C, Arboleda E, Tessmar-Raible K, Raible F: Stable transgenesis in the marine annelid Platynereis dumerilii sheds new light on photoreceptor evolution. / Proc Natl Acad Sci U S A 2013, 110:193-98. CrossRef
    80. Jékely G, Arendt D: Cellular resolution expression profiling using confocal detection of NBT/BCIP precipitate by reflection microscopy. / Biotech 2007, 42:751-55. CrossRef
    81. Randel N, Bezares-Calderón LA, Gühmann M, Shahidi R, Jékely G: Expression dynamics and protein localization of rhabdomeric opsins in Platynereis larvae. / Integr Comp Biol 2013, 53:7-6. CrossRef
    82. Asadulina A, Panzera A, Verasztó C, Liebig C, Jékely G: Whole-body gene expression pattern registration in Platynereis larvae. / Evodevo 2012, 3:27. CrossRef
    83. Hauenschild CFA: / Platynereis dumerilii. Mikroskopische Anatomie, Fortpflanzung, Entwicklung. Stuttgart: Gustav Fischer; 1969.
    84. Ewing B, Hillier L, Wendl MC, Green P: Base-calling of automated sequencer traces using phred. I. Accuracy assessment. / Genome Res 1998, 8:175-85. CrossRef
    85. Ewing B, Green P: Base-calling of automated sequencer traces using phred. II. Error probabilities. / Genome Res 1998, 8:186-94. CrossRef
    86. Schmieder R, Lim YW, Edwards R: Identification and removal of ribosomal RNA sequences from metatranscriptomes. / Bioinformatics 2012, 28:433-35. CrossRef
    87. Huang X, Madan A: CAP3: A DNA sequence assembly program. / Genome Res 1999, 9:868-77. CrossRef
    88. Robinson MD, McCarthy DJ, Smyth GK: edgeR: a Bioconductor package for differential expression analysis of digital gene expression data. / Bioinformatics 2010, 26:139-40. CrossRef
    89. Rappsilber J, Mann M, Ishihama Y: Protocol for micro-purification, enrichment, pre-fractionation and storage of peptides for proteomics using StageTips. / Nat Protoc 2007, 2:1896-906. CrossRef
    90. Borchert N, Dieterich C, Krug K, Schütz W, Jung S, Nordheim A, Sommer RJ, Macek B: Proteogenomics of Pristionchus pacificus reveals distinct proteome structure of nematode models. / Genome Res 2010, 20:837-46. CrossRef
    91. Franz-Wachtel M, Eisler SA, Krug K, Wahl S, Carpy A, Nordheim A, Pfizenmaier K, Hausser A, Macek B: Global detection of protein kinase D-dependent phosphorylation events in nocodazole-treated human cells. / Mol Cell Proteomics 2012, 11:160-70. CrossRef
    92. Cox J, Mann M: MaxQuant enables high peptide identification rates, individualized p.p.b.-range mass accuracies and proteome-wide protein quantification. / Nat Biotechnol 2008, 26:1367-372. CrossRef
    93. Cox J, Neuhauser N, Michalski A, Scheltema RA, Olsen JV, Mann M: Andromeda: a peptide search engine integrated into the MaxQuant environment. / J Proteome Res 2011, 10:1794-805. CrossRef
    94. Elias JE, Gygi SP: Target-decoy search strategy for increased confidence in large-scale protein identifications by mass spectrometry. / Nat Methods 2007, 4:207-14. CrossRef
  • 作者单位:Markus Conzelmann (6)
    Elizabeth A Williams (6)
    Karsten Krug (7)
    Mirita Franz-Wachtel (7)
    Boris Macek (7)
    Gáspár Jékely (6)

    6. Max Planck Institute for Developmental Biology, Spemannstrasse 35, 72076, Tübingen, Germany
    7. Proteome Center Tübingen, University of Tübingen, Auf der Morgenstelle 15, 72076, Tübingen, Germany
  • ISSN:1471-2164
文摘
Background The marine annelid Platynereis dumerilii is emerging as a powerful lophotrochozoan experimental model for evolutionary developmental biology (evo-devo) and neurobiology. Recent studies revealed the presence of conserved neuropeptidergic signaling in Platynereis, including vasotocin/neurophysin, myoinhibitory peptide and opioid peptidergic systems. Despite these advances, comprehensive peptidome resources have yet to be reported. Results The present work describes the neuropeptidome of Platynereis. We established a large transcriptome resource, consisting of stage-specific next-generation sequencing datasets and 77,419 expressed sequence tags. Using this information and a combination of bioinformatic searches and mass spectrometry analyses, we increased the known proneuropeptide (pNP) complement of Platynereis to 98. Based on sequence homology to metazoan pNPs, Platynereis pNPs were grouped into ancient eumetazoan, bilaterian, protostome, lophotrochozoan, and annelid families, and pNPs only found in Platynereis. Compared to the planarian Schmidtea mediterranea, the only other lophotrochozoan with a large-scale pNP resource, Platynereis has a remarkably full complement of conserved pNPs, with 53 pNPs belonging to ancient eumetazoan or bilaterian families. Our comprehensive search strategy, combined with analyses of sequence conservation, also allowed us to define several novel lophotrochozoan and annelid pNP families. The stage-specific transcriptome datasets also allowed us to map changes in pNP expression throughout the Platynereis life cycle. Conclusion The large repertoire of conserved pNPs in Platynereis highlights the usefulness of annelids in comparative neuroendocrinology. This work establishes a reference dataset for comparative peptidomics in lophotrochozoans and provides the basis for future studies of Platynereis peptidergic signaling.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700