用户名: 密码: 验证码:
Ensemble simulation of land evapotranspiration in China based on a multi-forcing and multi-model approach
详细信息    查看全文
  • 作者:Jianguo Liu ; Binghao Jia ; Zhenghui Xie ; Chunxiang Shi
  • 关键词:land evapotranspiration ; ensemble simulations ; multi ; forcing and multi ; model approach ; spatiotemporal variation ; uncertainty
  • 刊名:Advances in Atmospheric Sciences
  • 出版年:2016
  • 出版时间:June 2016
  • 年:2016
  • 卷:33
  • 期:6
  • 页码:673-684
  • 全文大小:7,244 KB
  • 参考文献:Adler, R. F., and Coauthors, 2003: The Version-2 Global Precipitation Climatology Project (GPCP) monthly precipitation analysis (1979–present). J. Hydrometeor., 4, 1147–1167.CrossRef
    Bonan, G. B., 2008: Forests and climate change: Forcings, feedbacks, and the climate benefits of forests. Science, 320(5882), 1444–1449.CrossRef
    Chen, J., B. Z. Chen, T. A. Black, J. L. Innes, G. Y.Wang, G. Kiely, T. Hirano, and G. Wohlfahrt, 2013: Comparison of terrestrial evapotranspiration estimates using the mass transfer and Penman-Monteith equations in land surface models. J. Geophys. Res., 118, 1715–1731, doi: 10.1002/2013JG002446.CrossRef
    Chen, M., P. Xie, J. E. Janowiak, and P. A. Arkin, 2002: Global land precipitation: A 50-yr monthly analysis based on gauge observations. J. Hydrometeor., 3, 249–266.CrossRef
    Chen, Y., and Coauthors, 2014: Comparison of satellite-based evapotranspiration models over terrestrial ecosystems in China. Remote Sensing of Environment, 140, 279–293, doi: 10.1016/j.rse.2013.08.045.CrossRef
    Chen, Y. Y., K. Yang, J. He, J. Qin, J. C. Shi, J. Y. Du, and Q. He, 2011: Improving land surface temperature modeling for dry land of China. J. Geophys. Res., 116, D20104, doi: 10.1029/2011JD015921.CrossRef
    Dickinson, R. E., A. Henderson-Sellers, and P. J. Kennedy, 1993: Biosphere-Atmosphere Transfer Scheme (BATS) Version 1e as coupled to the NCAR Community Climate Model. NCAR Tech. Note NCAR/TN387+STR, 77 pp.
    Dirmeyer, P. A., 1994: Vegetation stress as a feedback mechanism in midlatitude drought. J. Climate, 7, 1463–1483.CrossRef
    Dirmeyer, P. A., A. J. Dolman, and N. Sato, 1999: The pilot phase of the global soil wetness project. Bull. Amer. Meteor. Soc., 80(5), 851–878.CrossRef
    Dirmeyer, P. A., X. Gao, M. Zhao, Z. Guo, T. Oki, and N. Hanasaki., 2006: GSWP-2: multi-model analysis and implications for our perception of the land surface. Bull. Amer. Meteor. Soc., 87, 1381–1397.CrossRef
    Fu, J. L., W. H. Qian, X. Lin, and D. L. Chen, 2008: Trends of graded precipitation days in China from 1961 to 2000. Adv. Atmos. Sci., 25(2), 267–278, doi: 10.1007/s00376–008-p0267–2.CrossRef
    Gao, G., D. L. Chen, C. Y. Xu, and E. Simelton, 2007: Trend of estimated actual evapotranspiration over China during 1960–2002. J. Geophys. Res., 112, D11120, doi: 10.1029/2006JD008010.CrossRef
    Gao, G., C. Y. Xu, D. L. Chen, and V. P. Singh, 2012: Spatial and temporal characteristics of actual evapotranspiration over Haihe River basin in China. Stochastic Environmental Research and Risk Assessment, 26, 655–669, doi: 10.1007/s00477–011-0525–1.CrossRef
    Giorgi, F., R. Francisco, and J. S. Pal, 2003: Effects of a subgridscale topography and land use scheme on the simulation of surface climate and hydrology. Part I: Effects of temperature and water vapor disaggregation. Journal of Hydrometeorology, 4, 317–333.
    Guo, Z. C., P. A. Dirmeyer, X. Gao, and M. Zhao, 2007: Improving the quality of simulated soil moisture with a multi-model ensemble approach. Quart. J. Roy. Meteor. Soc., 133, 731–747.CrossRef
    He, J., 2010: Development of a surface meteorological dataset of China with high temporal and spatial resolution. M.S. thesis, Institute of Tibetan Plateau Research, Chinese Academy of Sciences, Beijing, China. (in Chinese)
    Jaksa, W. T., V. Sridhar, J. L. Huntington, and M. Khanal, 2013: Evaluation of the complementary relationship using Noah Land Surface Model and North American Regional Reanalysis (NARR) data to estimate evapotranspiration in semiarid ecosystems. Journal of Hydrometeorology, 14(1), 345–359.CrossRef
    Jung, M., M. Reichstein, and A. Bondeau, 2009: Towards global empirical upscaling of FLUXNET eddy covariance observations: Validation of a model tree ensemble approach using a biosphere model. Biogeosciences, 6, 2001–2013.CrossRef
    Jung, M., and Coauthors, 2010: Recent decline in the global land evapotranspiration trend due to limited moisture supply. Nature, 467, 951–954.CrossRef
    Kalnay, E., and Coauthors, 1996: The NCEP/NCAR 40-year reanalysis project. Bull. Amer. Meteor. Soc., 77, 437–471.CrossRef
    Li, X. L., and Coauthors, 2014: Estimation of evapotranspiration over the terrestrial ecosystems in China. Ecohydrology, 7, 139–149.CrossRef
    Liang, X., and Z. H. Xie, 2001: A new surface runoff parameterization with subgrid-scale soil heterogeneity for land surface models. Advances in Water Resources, 24, 1173–1193.CrossRef
    Liang, X., E. F. Wood, and D. P. Lettenmaier, 1996: Surface soil moisture parameterization of the VIC-2L model: Evaluation and modification. Global and Planetary Change, 13, 195–206.CrossRef
    Liu, J. G., and Z. H. Xie, 2013: Improving simulation of soil moisture in China using a multiple meteorological forcing ensemble approach. Hydrology and Earth System Sciences, 17, 3355–3369, doi: 10.5194/hess-17–3355-2013.CrossRef
    Mao, J. F., and Coauthors, 2015: Disentangling climatic and anthropogenic controls on global terrestrial evapotranspiration trends. Environmental Research Letters, 10(9), 094008, doi: 10.1088/1748–9326/10/9/094008.CrossRef
    Matthews, E., 1983: Global vegetation and land use: New high resolution data bases for climate studies. J. Clim. Appl. Meteor., 22, 474–487.CrossRef
    Mitchell, K. E., and Coauthors, 2004: The multi-institution North American Land Data Assimilation System (NLDAS): Utilizing multiple CIP products and partners in a continental distributed hydrological modeling system. J. Geophys. Res., 109, D07S90, doi: 10.1029/2003JD003823.
    Niu, G. Y., and Coauthors, 2007: Development of a simple groundwater model for use in climate models and evaluation with gravity recovery and climate experiment data. J. Geophys. Res.-Atmos., 112, doi: 7110.01029/02006jd007522.
    New, M., M. Hulme, and P. Jones, 1999: Representing twentiethcentury space–time climate variability. Part I: Development of a 1961–90 mean monthly terrestrial climatology. J. Climate, 12, 829–856.
    Oki, T., and S. Kanae, 2006: Global hydrological cycles and world water resources. Science, 313, 1068–1072, doi: 10.1126/science.1128845.CrossRef
    Oleson, K. W., and Coauthors, 2004: Technical description of the community land model (CLM). Tech. Note NCAR/TN- 461+STR, Natl. Cent. Atmos. Res., Boulder CO, 174 pp.
    Oleson, K. W., and Coauthors, 2007: CLM 3.5 documentation. 34 pp. [Available online at http://​www.​cgd.​ucar.​edu/​tss/​clm/​distribution/​clm3.​5/​CLM35documentati​on.​pdf.​]
    Pinker, R. T., and I. Laszlo, 1992: Modeling surface solar irradiance for satellite applications on a global scale. J. Appl. Meteor., 31, 194–211, doi: 10.1175/1520–0450(1992)031<0194: MSSIFS>2.0.CO;2.CrossRef
    Qian, T. T., A. G. Dai, K. E. Trenberth, and K. W. Oleson, 2006: Simulation of global land surface conditions from 1948 to 2004. Part I: Forcing data and evaluations. Journal of Hydrometeorology, 7, 953–975.
    Rodell, M., and Coauthors, 2004: The global land data assimilation system. Bull. Amer. Meteor. Soc., 85, 381–394.CrossRef
    Sheffield, J., G. Goteti, and E. F. Wood, 2006: Development of a 50-year high- resolution global dataset of meteorological forcings for land surface modeling. J. Climate, 19, 3088–3111, doi: 10.1175/JCLI3790.1.CrossRef
    Sheffield, J., and E. F. Wood, 2007: Characteristics of global and regional drought, 1950–2000: Analysis of soil moisture data from off-line simulation of the terrestrial hydrologic cycle. J. Geophys. Res., 112, D17115, doi: 10.1029/2006JD008288.CrossRef
    Shi, X. Y., J. F. Mao, P. E. Thornton, and M. Y. Huang, 2013: Spatiotemporal patterns of evapotranspiration in response to multiple environmental factors simulated by the Community Land Model, Environ. Environmental Research Letters, 8, 024012, doi: 10.1088/1748–9326/8/2/024012.CrossRef
    Tian, X. J., Z. H. Xie, A. G. Dai, B. H. Jia, and C. X. Shi, 2010: A microwave land data assimilation system: Scheme and preliminary evaluation over China. J. Geophys. Res., 115, D21113, doi: 10.1029/2010JD014370.CrossRef
    Vinukollu, R. K., J. Sheffield, E. F. Wood, M. G. Bosilovich, and D. Mocko, 2012: Multimodel analysis of energy and water fluxes: Intercomparisons between operational analyses, a land surface model, and remote sensing. Journal of Hydrometeorology, 13(1), 3–26.CrossRef
    Wang, A. H., and X. B. Zeng, 2011: Sensitivities of terrestrial water cycle simulations to the variations of precipitation and air temperature in China. J. Geophys. Res., 116, D02107, doi: 10.1029/2010JD014659.
    Wang, A. H., D. P. Lettenmaier, and J. Sheffield, 2011: Soil moisture drought in China, 1950–2006. J. Climate, 24, 3257–3271.CrossRef
    Wang, K. C., {R. E. Dickinson, M. Wild, and S. L. Liang, 2010}: Evidence for decadal variation in global terrestrial ET between 1982 and 2002: 2.Results}. J. Geophys. Res.}, 115, D20113}, doi: 10.1029/2010JD013
    Wang, K. C., and R. E. Dickinson, 2012: A review of global terrestrial evapotranspiration: Observation, modeling, climatology, and climatic variability. Rev. Geophys., 50, RG2005, doi: 10.1029/2011RG000373.CrossRef
    Wei, J. F., P. A. Dirmeyer, and Z. C. Guo, 2008: Sensitivities of soil wetness simulation to uncertainties in precipitation and radiation. Geophys. Res. Lett., 35, L15703, doi: 10.1029/2008GL034494.CrossRef
    Xu, C. Y., L. B. Gong, T. Jiang, D. L. Chen, and V. P. Singh, 2006: Analysis of spatial distribution and temporal trend of reference evapotranspiration and pan evaporation in Changjiang (Yangtze River) catchment. J. Hydrol., 327(1–2), 81–93.CrossRef
    Yang, K., T. Koike, and B. S. Ye, 2006: Improving estimation of hourly, daily, and monthly solar radiation by importing global data sets. Agricultural and Forest Meteorology, 137, 43–55.CrossRef
    Zhang, Y.-C., W. B. Rossow, A. A. Lacis, V. Oinas, and M. I. Mishchenko, 2004: Calculation of radiative fluxes from the surface to top of atmosphere based on ISCCP and other global data sets: Refinements of the radiative transfer model and the input data. J. Geophys. Res., 109, D19105, doi: 10.1029/2003JD004457.CrossRef
  • 作者单位:Jianguo Liu (1) (2)
    Binghao Jia (2)
    Zhenghui Xie (2)
    Chunxiang Shi (3)

    1. High Performance Computing Center, School of Mathematics and Computational Science, Huaihua University, Huaihua, Hunan, 418008, China
    2. State Key Laboratory of Numerical Modeling for Atmospheric Sciences and Geophysical Fluid Dynamics, Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing, 100029, China
    3. National Meteorological Information Center, China Meteorological Administration, Beijing, 100081, China
  • 刊物主题:Atmospheric Sciences; Meteorology; Geophysics/Geodesy;
  • 出版者:Springer Berlin Heidelberg
  • ISSN:1861-9533
文摘
In order to reduce the uncertainty of offline land surface model (LSM) simulations of land evapotranspiration (ET), we used ensemble simulations based on three meteorological forcing datasets [Princeton, ITPCAS (Institute of Tibetan Plateau Research, Chinese Academy of Sciences), Qian] and four LSMs (BATS, VIC, CLM3.0 and CLM3.5), to explore the trends and spatiotemporal characteristics of ET, as well as the spatiotemporal pattern of ET in response to climate factors over mainland China during 1982–2007. The results showed that various simulations of each member and their arithmetic mean (Ens Mean) could capture the spatial distribution and seasonal pattern of ET sufficiently well, where they exhibited more significant spatial and seasonal variation in the ET compared with observation-based ET estimates (Obs MTE). For the mean annual ET, we found that the BATS forced by Princeton forcing overestimated the annual mean ET compared with Obs MTE for most of the basins in China, whereas the VIC forced by Princeton forcing showed underestimations. By contrast, the Ens Mean was closer to Obs MTE, although the results were underestimated over Southeast China. Furthermore, both the Obs MTE and Ens Mean exhibited a significant increasing trend during 1982–98; whereas after 1998, when the last big EI Ni˜no event occurred, the Ens Mean tended to decrease significantly between 1999 and 2007, although the change was not significant for Obs MTE. Changes in air temperature and shortwave radiation played key roles in the long-term variation in ET over the humid area of China, but precipitation mainly controlled the long-term variation in ET in arid and semi-arid areas of China.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700