用户名: 密码: 验证码:
Molecular mechanism of mitochondrial calcium uptake
详细信息    查看全文
  • 作者:Lele Wang (1)
    Xue Yang (1)
    Yuequan Shen (1) (2) (3)

    1. State Key Laboratory of Medicinal Chemical Biology
    ; Nankai University ; 94 Weijin Road ; Tianjin ; 300071 ; China
    2. College of Life Sciences
    ; Nankai University ; 94 Weijin Road ; Tianjin ; 300071 ; China
    3. Collaborative Innovation Center of Chemical Science and Engineering (Tianjin)
    ; Tianjin ; 300072 ; China
  • 关键词:Calcium signaling ; Calcium channel ; VDAC ; MCU ; MICU ; EMRE ; MCUR1
  • 刊名:Cellular and Molecular Life Sciences (CMLS)
  • 出版年:2015
  • 出版时间:April 2015
  • 年:2015
  • 卷:72
  • 期:8
  • 页码:1489-1498
  • 全文大小:1,023 KB
  • 参考文献:1. Rizzuto, R, Stefani, D, Raffaello, A, Mammucari, C (2012) Mitochondria as sensors and regulators of calcium signalling. Nat Rev Mol Cell Biol 13: pp. 566-578 412" target="_blank" title="It opens in new window">CrossRef
    2. Chandel, NS (2014) Mitochondria as signaling organelles. BMC Biol 12: pp. 34 41-7007-12-34" target="_blank" title="It opens in new window">CrossRef
    3. Pagliarini, DJ, Rutter, J (2013) Hallmarks of a new era in mitochondrial biochemistry. Genes Dev 27: pp. 2615-2627 4.113" target="_blank" title="It opens in new window">CrossRef
    4. Clapham, DE (2007) Calcium signaling. Cell 131: pp. 1047-1058 CrossRef
    5. Carafoli, E (2010) The fateful encounter of mitochondria with calcium: how did it happen?. Biochim Biophys Acta 1797: pp. 595-606 4" target="_blank" title="It opens in new window">CrossRef
    6. Graier, WF, Frieden, M, Malli, R (2007) Mitochondria and Ca(2+) signaling: old guests, new functions. Pflugers Arch 455: pp. 375-396 424-007-0296-1" target="_blank" title="It opens in new window">CrossRef
    7. Duchen, MR (2000) Mitochondria and calcium: from cell signalling to cell death. J Physiol 529: pp. 57-68 469-7793.2000.00057.x" target="_blank" title="It opens in new window">CrossRef
    8. Feske, S, Skolnik, EY, Prakriya, M (2012) Ion channels and transporters in lymphocyte function and immunity. Nat Rev Immunol 12: pp. 532-547 CrossRef
    9. Rowland, AA, Voeltz, GK (2012) Endoplasmic reticulum-mitochondria contacts: function of the junction. Nat Rev Mol Cell Biol 13: pp. 607-625 440" target="_blank" title="It opens in new window">CrossRef
    10. Herrington, J, Park, YB, Babcock, DF, Hille, B (1996) Dominant role of mitochondria in clearance of large Ca2+ loads from rat adrenal chromaffin cells. Neuron 16: pp. 219-228 CrossRef
    11. Babcock, DF, Herrington, J, Goodwin, PC, Park, YB, Hille, B (1997) Mitochondrial participation in the intracellular Ca2+ network. J Cell Biol 136: pp. 833-844 4.833" target="_blank" title="It opens in new window">CrossRef
    12. Jouaville, LS, Ichas, F, Holmuhamedov, EL, Camacho, P, Lechleiter, JD (1995) Synchronization of calcium waves by mitochondrial substrates in Xenopus laevis oocytes. Nature 377: pp. 438-441 438a0" target="_blank" title="It opens in new window">CrossRef
    13. Boitier, E, Rea, R, Duchen, MR (1999) Mitochondria exert a negative feedback on the propagation of intracellular Ca2+ waves in rat cortical astrocytes. J Cell Biol 145: pp. 795-808 45.4.795" target="_blank" title="It opens in new window">CrossRef
    14. Denton, RM, McCormack, JG (1980) The role of calcium in the regulation of mitochondrial metabolism. Biochem Soc Trans 8: pp. 266-268
    15. McCormack, JG, Denton, RM (1979) The effects of calcium ions and adenine nucleotides on the activity of pig heart 2-oxoglutarate dehydrogenase complex. Biochem J 180: pp. 533-544
    16. Jouaville, LS, Pinton, P, Bastianutto, C, Rutter, GA, Rizzuto, R (1999) Regulation of mitochondrial ATP synthesis by calcium: evidence for a long-term metabolic priming. Proc Natl Acad Sci USA 96: pp. 13807-13812 4.13807" target="_blank" title="It opens in new window">CrossRef
    17. Orrenius, S, Zhivotovsky, B, Nicotera, P (2003) Regulation of cell death: the calcium-apoptosis link. Nat Rev Mol Cell Biol 4: pp. 552-565 CrossRef
    18. Hajnoczky, G, Csordas, G, Madesh, M, Pacher, P (2000) Control of apoptosis by IP(3) and ryanodine receptor driven calcium signals. Cell Calcium 28: pp. 349-363 4/ceca.2000.0169" target="_blank" title="It opens in new window">CrossRef
    19. Szalai, G, Krishnamurthy, R, Hajnoczky, G (1999) Apoptosis driven by IP(3)-linked mitochondrial calcium signals. EMBO J 18: pp. 6349-6361 49" target="_blank" title="It opens in new window">CrossRef
    20. Pinton, P, Ferrari, D, Rapizzi, E, Virgilio, F, Pozzan, T, Rizzuto, R (2001) The Ca2+ concentration of the endoplasmic reticulum is a key determinant of ceramide-induced apoptosis: significance for the molecular mechanism of Bcl-2 action. EMBO J 20: pp. 2690-2701 CrossRef
    21. Scorrano, L, Oakes, SA, Opferman, JT, Cheng, EH, Sorcinelli, MD, Pozzan, T, Korsmeyer, SJ (2003) BAX and BAK regulation of endoplasmic reticulum Ca2+: a control point for apoptosis. Science 300: pp. 135-139 CrossRef
    22. Deluca, HF, Engstrom, GW (1961) Calcium uptake by rat kidney mitochondria. Proc Natl Acad Sci USA 47: pp. 1744-1750 47.11.1744" target="_blank" title="It opens in new window">CrossRef
    23. Vasington, FD, Murphy, JV (1962) Ca ion uptake by rat kidney mitochondria and its dependence on respiration and phosphorylation. J Biol Chem 237: pp. 2670-2677
    24. Brand, MD, Chen, CH, Lehninger, AL (1976) Stoichiometry of H+ ejection during respiration-dependent accumulation of Ca2+ by rat liver mitochondria. J Biol Chem 251: pp. 968-974
    25. Kirichok, Y, Krapivinsky, G, Clapham, DE (2004) The mitochondrial calcium uniporter is a highly selective ion channel. Nature 427: pp. 360-364 46" target="_blank" title="It opens in new window">CrossRef
    26. Rottenberg, H, Scarpa, A (1974) Calcium uptake and membrane potential in mitochondria. Biochemistry 13: pp. 4811-4817 CrossRef
    27. Drago, I, Pizzo, P, Pozzan, T (2011) After half a century mitochondrial calcium in- and efflux machineries reveal themselves. EMBO J 30: pp. 4119-4125 CrossRef
    28. Rizzuto, R, Pozzan, T (2006) Microdomains of intracellular Ca2+: molecular determinants and functional consequences. Physiol Rev 86: pp. 369-408 4.2005" target="_blank" title="It opens in new window">CrossRef
    29. Rizzuto, R, Pinton, P, Carrington, W, Fay, FS, Fogarty, KE, Lifshitz, LM, Tuft, RA, Pozzan, T (1998) Close contacts with the endoplasmic reticulum as determinants of mitochondrial Ca2+ responses. Science 280: pp. 1763-1766 CrossRef
    30. Csordas, G, Thomas, AP, Hajnoczky, G (1999) Quasi-synaptic calcium signal transmission between endoplasmic reticulum and mitochondria. EMBO J 18: pp. 96-108 CrossRef
    31. Shoshan-Barmatz, V, Ben-Hail, D (2012) VDAC, a multi-functional mitochondrial protein as a pharmacological target. Mitochondrion 12: pp. 24-34 4.001" target="_blank" title="It opens in new window">CrossRef
    32. Bathori, G, Csordas, G, Garcia-Perez, C, Davies, E, Hajnoczky, G (2006) Ca2+-dependent control of the permeability properties of the mitochondrial outer membrane and voltage-dependent anion-selective channel (VDAC). J Biol Chem 281: pp. 17347-17358 4/jbc.M600906200" target="_blank" title="It opens in new window">CrossRef
    33. Shoshan-Barmatz, V, Israelson, A, Brdiczka, D, Sheu, SS (2006) The voltage-dependent anion channel (VDAC): function in intracellular signalling, cell life and cell death. Curr Pharm Des 12: pp. 2249-2270 4/138161206777585111" target="_blank" title="It opens in new window">CrossRef
    34. Hodge, T, Colombini, M (1997) Regulation of metabolite flux through voltage-gating of VDAC channels. J Membr Biol 157: pp. 271-279 CrossRef
    35. Shoshan-Barmatz, V, Pinto, V, Zweckstetter, M, Raviv, Z, Keinan, N, Arbel, N (2010) VDAC, a multi-functional mitochondrial protein regulating cell life and death. Mol Aspects Med 31: pp. 227-285 CrossRef
    36. Stefani, D, Bononi, A, Romagnoli, A, Messina, A, Pinto, V, Pinton, P, Rizzuto, R (2012) VDAC1 selectively transfers apoptotic Ca2+ signals to mitochondria. Cell Death Differ 19: pp. 267-273 CrossRef
    37. Gincel, D, Zaid, H, Shoshan-Barmatz, V (2001) Calcium binding and translocation by the voltage-dependent anion channel: a possible regulatory mechanism in mitochondrial function. Biochem J 358: pp. 147-155 42/0264-6021:3580147" target="_blank" title="It opens in new window">CrossRef
    38. Tsai, MF, Jiang, D, Zhao, L, Clapham, D, Miller, C (2014) Functional reconstitution of the mitochondrial Ca2+/H+ antiporter Letm1. J Gen Physiol 143: pp. 67-73 CrossRef
    39. Bayrhuber, M, Meins, T, Habeck, M, Becker, S, Giller, K, Villinger, S, Vonrhein, C, Griesinger, C, Zweckstetter, M, Zeth, K (2008) Structure of the human voltage-dependent anion channel. Proc Natl Acad Sci USA 105: pp. 15370-15375 CrossRef
    40. Ujwal, R, Cascio, D, Colletier, JP, Faham, S, Zhang, J, Toro, L, Ping, P, Abramson, J (2008) The crystal structure of mouse VDAC1 at 2.3 A resolution reveals mechanistic insights into metabolite gating. Proc Natl Acad Sci USA 105: pp. 17742-17747 4105" target="_blank" title="It opens in new window">CrossRef
    41. Hiller, S, Garces, RG, Malia, TJ, Orekhov, VY, Colombini, M, Wagner, G (2008) Solution structure of the integral human membrane protein VDAC-1 in detergent micelles. Science 321: pp. 1206-1210 CrossRef
    42. Abu-Hamad, S, Arbel, N, Calo, D, Arzoine, L, Israelson, A, Keinan, N, Ben-Romano, R, Friedman, O, Shoshan-Barmatz, V (2009) The VDAC1N-terminus is essential both for apoptosis and the protective effect of anti-apoptotic proteins. J Cell Sci 122: pp. 1906-1916 42/jcs.040188" target="_blank" title="It opens in new window">CrossRef
    43. Zheng, L, Stathopulos, PB, Li, GY, Ikura, M (2008) Biophysical characterization of the EF-hand and SAM domain containing Ca2+ sensory region of STIM1 and STIM2. Biochem Biophys Res Commun 369: pp. 240-246 CrossRef
    44. Joiner, ML, Koval, OM, Li, J, He, BJ, Allamargot, C, Gao, Z, Luczak, ED, Hall, DD, Fink, BD, Chen, B (2012) CaMKII determines mitochondrial stress responses in heart. Nature 491: pp. 269-273 444" target="_blank" title="It opens in new window">CrossRef
    45. Israelson, A, Abu-Hamad, S, Zaid, H, Nahon, E, Shoshan-Barmatz, V (2007) Localization of the voltage-dependent anion channel-1 Ca2+-binding sites. Cell Calcium 41: pp. 235-244 CrossRef
    46. Israelson, A, Zaid, H, Abu-Hamad, S, Nahon, E, Shoshan-Barmatz, V (2008) Mapping the ruthenium red-binding site of the voltage-dependent anion channel-1. Cell Calcium 43: pp. 196-204 CrossRef
    47. Perocchi, F, Gohil, VM, Girgis, HS, Bao, XR, McCombs, JE, Palmer, AE, Mootha, VK (2010) MICU1 encodes a mitochondrial EF hand protein required for Ca(2+) uptake. Nature 467: pp. 291-296 CrossRef
    48. Collins, S, Meyer, T (2010) Cell biology: a sensor for calcium uptake. Nature 467: pp. 283 467283a" target="_blank" title="It opens in new window">CrossRef
    49. Sancak, Y, Markhard, AL, Kitami, T, Kovacs-Bogdan, E, Kamer, KJ, Udeshi, ND, Carr, SA, Chaudhuri, D, Clapham, DE, Li, AA (2013) EMRE is an essential component of the mitochondrial calcium uniporter complex. Science 342: pp. 1379-1382 42993" target="_blank" title="It opens in new window">CrossRef
    50. Hajnoczky, G, Csordas, G (2010) Calcium signalling: fishing out molecules of mitochondrial calcium transport. Curr Biol 20: pp. R888-R891 CrossRef
    51. Bick, AG, Calvo, SE, Mootha, VK (2012) Evolutionary diversity of the mitochondrial calcium uniporter. Science 336: pp. 886 4977" target="_blank" title="It opens in new window">CrossRef
    52. Baughman, JM, Perocchi, F, Girgis, HS, Plovanich, M, Belcher-Timme, CA, Sancak, Y, Bao, XR, Strittmatter, L, Goldberger, O, Bogorad, RL (2011) Integrative genomics identifies MCU as an essential component of the mitochondrial calcium uniporter. Nature 476: pp. 341-345 4" target="_blank" title="It opens in new window">CrossRef
    53. Mallilankaraman, K, Doonan, P, Cardenas, C, Chandramoorthy, HC, Muller, M, Miller, R, Hoffman, NE, Gandhirajan, RK, Molgo, J, Birnbaum, MJ (2012) MICU1 is an essential gatekeeper for MCU-mediated mitochondrial Ca(2+) uptake that regulates cell survival. Cell 151: pp. 630-644 CrossRef
    54. Hoffman, NE, Chandramoorthy, HC, Shamugapriya, S, Zhang, X, Rajan, S, Mallilankaraman, K, Gandhirajan, RK, Vagnozzi, RJ, Ferrer, LM, Sreekrishnanilayam, K (2013) MICU1 motifs define mitochondrial calcium uniporter binding and activity. Cell Rep 5: pp. 1576-1588 CrossRef
    55. Wang, L, Yang, X, Li, S, Wang, Z, Liu, Y, Feng, J, Zhu, Y, Shen, Y (2014) Structural and mechanistic insights into MICU1 regulation of mitochondrial calcium uptake. EMBO J 33: pp. 594-604 CrossRef
    56. Csordas, G, Golenar, T, Seifert, EL, Kamer, KJ, Sancak, Y, Perocchi, F, Moffat, C, Weaver, D, Perez, SDLF, Bogorad, R (2013) MICU1 controls both the threshold and cooperative activation of the mitochondrial Ca2+ uniporter. Cell Metab 17: pp. 976-987 4.020" target="_blank" title="It opens in new window">CrossRef
    57. Patron, M, Checchetto, V, Raffaello, A, Teardo, E, Vecellio Reane, D, Mantoan, M, Granatiero, V, Szabo, I, Stefani, D, Rizzuto, R (2014) MICU1 and MICU2 finely tune the mitochondrial Ca2+ uniporter by exerting opposite effects on MCU activity. Mol Cell 53: pp. 726-737 4.01.013" target="_blank" title="It opens in new window">CrossRef
    58. Hung, V, Zou, P, Rhee, HW, Udeshi, ND, Cracan, V, Svinkina, T, Carr, SA, Mootha, VK, Ting, AY (2014) Proteomic mapping of the human mitochondrial intermembrane space in live cells via ratiometric APEX tagging. Mol Cell 55: pp. 332-341 4.06.003" target="_blank" title="It opens in new window">CrossRef
    59. Kamer, KJ, Mootha, VK (2014) MICU1 and MICU2 play nonredundant roles in the regulation of the mitochondrial calcium uniporter. EMBO Rep 15: pp. 299-307 46" target="_blank" title="It opens in new window">CrossRef
    60. Plovanich, M, Bogorad, RL, Sancak, Y, Kamer, KJ, Strittmatter, L, Li, AA, Girgis, HS, Kuchimanchi, S, Groot, J, Speciner, L (2013) MICU2, a paralog of MICU1, resides within the mitochondrial uniporter complex to regulate calcium handling. PLoS ONE 8: pp. e55785 CrossRef
    61. Ahuja, M, Muallem, S (2014) The gatekeepers of mitochondrial calcium influx: mICU1 and MICU2. EMBO Rep 15: pp. 205-206 438446" target="_blank" title="It opens in new window">CrossRef
    62. Stefani, D, Raffaello, A, Teardo, E, Szabo, I, Rizzuto, R (2011) A forty-kilodalton protein of the inner membrane is the mitochondrial calcium uniporter. Nature 476: pp. 336-340 CrossRef
    63. Raffaello, A, Stefani, D, Sabbadin, D, Teardo, E, Merli, G, Picard, A, Checchetto, V, Moro, S, Szabo, I, Rizzuto, R (2013) The mitochondrial calcium uniporter is a multimer that can include a dominant-negative pore-forming subunit. EMBO J 32: pp. 2362-2376 CrossRef
    64. Martell, JD, Deerinck, TJ, Sancak, Y, Poulos, TL, Mootha, VK, Sosinsky, GE, Ellisman, MH, Ting, AY (2012) Engineered ascorbate peroxidase as a genetically encoded reporter for electron microscopy. Nat Biotechnol 30: pp. 1143-1148 CrossRef
    65. Marchi, S, Lupini, L, Patergnani, S, Rimessi, A, Missiroli, S, Bonora, M, Bononi, A, Corra, F, Giorgi, C, Marchi, E (2013) Downregulation of the mitochondrial calcium uniporter by cancer-related miR-25. Curr Biol 23: pp. 58-63 CrossRef
    66. Kovacs-Bogdan, E, Sancak, Y, Kamer, KJ, Plovanich, M, Jambhekar, A, Huber, RJ, Myre, MA, Blower, MD, Mootha, VK (2014) Reconstitution of the mitochondrial calcium uniporter in yeast. Proc Natl Acad Sci USA 111: pp. 8985-8990 400514111" target="_blank" title="It opens in new window">CrossRef
    67. Herzig, S, Maundrell, K, Martinou, JC (2013) Life without the mitochondrial calcium uniporter. Nat Cell Biol 15: pp. 1398-1400 CrossRef
    68. Pan, X, Liu, J, Nguyen, T, Liu, C, Sun, J, Teng, Y, Fergusson, MM, Rovira, II, Allen, M, Springer, DA (2013) The physiological role of mitochondrial calcium revealed by mice lacking the mitochondrial calcium uniporter. Nat Cell Biol 15: pp. 1464-1472 CrossRef
    69. Bondarenko, AI, Jean-Quartier, C, Malli, R, Graier, WF (2013) Characterization of distinct single-channel properties of Ca(2+) inward currents in mitochondria. Pflugers Arch 465: pp. 997-1010 424-013-1224-1" target="_blank" title="It opens in new window">CrossRef
    70. Pendin, D, Greotti, E, Pozzan, T (2014) The elusive importance of being a mitochondrial Ca(2+) uniporter. Cell Calcium 55: pp. 139-145 4.02.008" target="_blank" title="It opens in new window">CrossRef
    71. Marchi, S, Pinton, P (2014) The mitochondrial calcium uniporter complex: molecular components, structure and physiopathological implications. J Physiol 592: pp. 829-839 CrossRef
    72. Mallilankaraman, K, Cardenas, C, Doonan, PJ, Chandramoorthy, HC, Irrinki, KM, Golenar, T, Csordas, G, Madireddi, P, Yang, J, Muller, M (2012) MCUR1 is an essential component of mitochondrial Ca2+ uptake that regulates cellular metabolism. Nat Cell Biol 14: pp. 1336-1343 CrossRef
    73. Hoffman, NE, Chandramoorthy, HC, Shanmughapriya, S, Zhang, XQ, Vallem, S, Doonan, PJ, Malliankaraman, K, Guo, S, Rajan, S, Elrod, JW (2014) SLC25A23 augments mitochondrial Ca(2)(+) uptake, interacts with MCU, and induces oxidative stress-mediated cell death. Mol Biol Cell 25: pp. 936-947 CrossRef
    74. Dedkova, EN, Blatter, LA (2013) Calcium signaling in cardiac mitochondria. J Mol Cell Cardiol 58: pp. 125-133 CrossRef
    75. Feng, S, Li, H, Tai, Y, Huang, J, Su, Y, Abramowitz, J, Zhu, MX, Birnbaumer, L, Wang, Y (2013) Canonical transient receptor potential 3 channels regulate mitochondrial calcium uptake. Proc Natl Acad Sci USA 110: pp. 11011-11016 CrossRef
    76. Ryu, SY, Beutner, G, Dirksen, RT, Kinnally, KW, Sheu, SS (2010) Mitochondrial ryanodine receptors and other mitochondrial Ca2+ permeable channels. FEBS Lett 584: pp. 1948-1955 CrossRef
    77. Beutner, G, Sharma, VK, Giovannucci, DR, Yule, DI, Sheu, SS (2001) Identification of a ryanodine receptor in rat heart mitochondria. J Biol Chem 276: pp. 21482-21488 4/jbc.M101486200" target="_blank" title="It opens in new window">CrossRef
    78. Jakob, R, Beutner, G, Sharma, VK, Duan, Y, Gross, RA, Hurst, S, Jhun, BS, O-Uchi, J, Sheu, SS (2014) Molecular and functional identification of a mitochondrial ryanodine receptor in neurons. Neurosci Lett 575: pp. 7-12 4.05.026" target="_blank" title="It opens in new window">CrossRef
    79. Beutner, G, Sharma, VK, Lin, L, Ryu, SY, Dirksen, RT, Sheu, SS (2005) Type 1 ryanodine receptor in cardiac mitochondria: transducer of excitation-metabolism coupling. Biochim Biophys Acta 1717: pp. 1-10 CrossRef
    80. Altschafl, BA, Beutner, G, Sharma, VK, Sheu, SS, Valdivia, HH (2007) The mitochondrial ryanodine receptor in rat heart: a pharmaco-kinetic profile. Biochim Biophys Acta 1768: pp. 1784-1795 4.011" target="_blank" title="It opens in new window">CrossRef
    81. Ryu, SY, Beutner, G, Kinnally, KW, Dirksen, RT, Sheu, SS (2011) Single channel characterization of the mitochondrial ryanodine receptor in heart mitoplasts. J Biol Chem 286: pp. 21324-21329 4/jbc.C111.245597" target="_blank" title="It opens in new window">CrossRef
    82. Stuart, JA, Cadenas, S, Jekabsons, MB, Roussel, D, Brand, MD (2001) Mitochondrial proton leak and the uncoupling protein 1 homologues. Biochim Biophys Acta 1504: pp. 144-158 43-7" target="_blank" title="It opens in new window">CrossRef
    83. Trenker, M, Malli, R, Fertschai, I, Levak-Frank, S, Graier, WF (2007) Uncoupling proteins 2 and 3 are fundamental for mitochondrial Ca2+ uniport. Nat Cell Biol 9: pp. 445-452 CrossRef
    84. Berardi, MJ, Shih, WM, Harrison, SC, Chou, JJ (2011) Mitochondrial uncoupling protein 2 structure determined by NMR molecular fragment searching. Nature 476: pp. 109-113 CrossRef
    85. Hashimi, H, McDonald, L, Stribrna, E, Lukes, J (2013) Trypanosome Letm1 protein is essential for mitochondrial potassium homeostasis. J Biol Chem 288: pp. 26914-26925 4/jbc.M113.495119" target="_blank" title="It opens in new window">CrossRef
    86. Nowikovsky, K, Bernardi, P (2014) LETM1 in mitochondrial cation transport. Front Physiol 5: pp. 83 4.00083" target="_blank" title="It opens in new window">CrossRef
    87. Nowikovsky, K, Froschauer, EM, Zsurka, G, Samaj, J, Reipert, S, Kolisek, M, Wiesenberger, G, Schweyen, RJ (2004) The LETM1/YOL027 gene family encodes a factor of the mitochondrial K+ homeostasis with a potential role in the Wolf鈥揌irschhorn syndrome. J Biol Chem 279: pp. 30307-30315 4/jbc.M403607200" target="_blank" title="It opens in new window">CrossRef
    88. Dimmer, KS, Navoni, F, Casarin, A, Trevisson, E, Endele, S, Winterpacht, A, Salviati, L, Scorrano, L (2008) LETM1, deleted in Wolf鈥揌irschhorn syndrome is required for normal mitochondrial morphology and cellular viability. Hum Mol Genet 17: pp. 201-214 CrossRef
    89. Jiang, D, Zhao, L, Clapham, DE (2009) Genome-wide RNAi screen identifies Letm1 as a mitochondrial Ca2+/H+ antiporter. Science 326: pp. 144-147 45" target="_blank" title="It opens in new window">CrossRef
    90. Sparagna, GC, Gunter, KK, Sheu, SS, Gunter, TE (1995) Mitochondrial calcium uptake from physiological-type pulses of calcium. A description of the rapid uptake mode. J Biol Chem 270: pp. 27510-27515 4/jbc.270.46.27510" target="_blank" title="It opens in new window">CrossRef
    91. Michels, G, Khan, IF, Endres-Becker, J, Rottlaender, D, Herzig, S, Ruhparwar, A, Wahlers, T, Hoppe, UC (2009) Regulation of the human cardiac mitochondrial Ca2+ uptake by 2 different voltage-gated Ca2+ channels. Circulation 119: pp. 2435-2443 CrossRef
    92. Bogeski, I, Gulaboski, R, Kappl, R, Mirceski, V, Stefova, M, Petreska, J, Hoth, M (2011) Calcium binding and transport by coenzyme Q. J Am Chem Soc 133: pp. 9293-9303 CrossRef
    93. Beech, DJ, Bahnasi, YM, Dedman, AM, Al-Shawaf, E (2009) TRPC channel lipid specificity and mechanisms of lipid regulation. Cell Calcium 45: pp. 583-588 CrossRef
  • 刊物类别:Biomedical and Life Sciences
  • 刊物主题:Life Sciences
    Cell Biology
    Biomedicine
    Life Sciences
    Biochemistry
  • 出版者:Birkh盲user Basel
  • ISSN:1420-9071
文摘
Mitochondrial calcium uptake plays a critical role in various cellular functions. After half a century of extensive studies, the molecular components and important regulators of the mitochondrial calcium uptake complex have been identified. However, the mechanism by which these protein molecules interact with one another and coordinate to regulate calcium passage through mitochondrial membranes remains elusive. Here, we summarize recent progress in the structural and functional characterization of these important protein molecules, which are involved in mitochondrial calcium uptake. In particular, we focus on the current understanding of the molecular mechanism underlying calcium through two mitochondrial membranes. Additionally, we provide a new perspective for future directions in investigation and molecular intervention.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700