用户名: 密码: 验证码:
Role of surface finishing on the in vitro biological properties of a silicon nitride–titanium nitride (Si3N4TiN) composite
详细信息    查看全文
  • 作者:F. Mussano ; T. Genova ; P. Rivolo ; P. Mandracci ; L. Munaron…
  • 刊名:Journal of Materials Science
  • 出版年:2017
  • 出版时间:January 2017
  • 年:2017
  • 卷:52
  • 期:1
  • 页码:467-477
  • 全文大小:1,569 KB
  • 刊物类别:Chemistry and Materials Science
  • 刊物主题:Chemistry
    Materials Science
    Characterization and Evaluation Materials
    Polymer Sciences
    Continuum Mechanics and Mechanics of Materials
    Crystallography
    Mechanics
  • 出版者:Springer Netherlands
  • ISSN:1573-4803
  • 卷排序:52
文摘
Silicon nitride (Si3N4) has been introduced clinically as an orthopedic biomaterial for interbody fusion devices and in joint replacements. However, the production of complex shapes through conventional mechanical machining is difficult and expensive and limits interesting applications. Thus, several electrically conductive reinforcements to the Si3N4 matrix, like TiN, have been proposed, generating composites suitable to be wrought by electrical discharge machining (EDM). In this study, Si3N4–TiN with high strength, low density, and good electric conductivity wrought by EDM was studied. The role of surface finishing was investigated comparing the interface generated during the EDM process to that resulting from further polishing. The different topographical features were assessed by electron microscopy, energy dispersive X-ray spectrometry, and profilometry. Surface wettability was also determined based on the measurement of the OCA of water and diiodomethane. The biological responses induced in MC3T3 cells, a widely diffused osteoblast model, were correlated with the surface pattern. The unpolished samples could promote better cell viability, with a more relevant effect on the cytoskeleton arrangement as highlighted by numerous cytoplasmic extensions and filopodia-like structures and the high number of focal adhesions, while MC3T3 cells grown on polished Si3N4–TiN specimens displayed a flat morphology. In addition, the unpolished Si3N4–TiN increased osteocalcin production and calcium deposition. Taken together, these data support the biocompatibility and in vitro osteogenic properties of the electroconductive Si3N4–TiN investigated. Further in vivo studies are required to explore the possible use of bone implants directly obtained by EDM.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700