用户名: 密码: 验证码:
Responses of Soil Bacterial Communities to Nitrogen Deposition and Precipitation Increment Are Closely Linked with Aboveground Community Variation
详细信息    查看全文
  • 作者:Hui Li ; Zhuwen Xu ; Shan Yang ; Xiaobin Li ; Eva M. Top ; Ruzhen Wang…
  • 关键词:Aboveground ; belowground linkages ; Soil bacterial diversity and community composition ; Interactive effects of nitrogen deposition and precipitation increment ; Temperate steppe ; Global change ; Copiotroph/oligotroph model
  • 刊名:Microbial Ecology
  • 出版年:2016
  • 出版时间:May 2016
  • 年:2016
  • 卷:71
  • 期:4
  • 页码:974-989
  • 全文大小:660 KB
  • 参考文献:1.Field CB, Chapin FS, Matson PA, Mooney HA (1992) Responses of terrestrial ecosystems to the changing atmosphere: a resource-based approach. Annu Rev Ecol Syst 23:201–235CrossRef
    2.Weltzin JF, Loik ME, Schwinning S et al (2003) Assessing the response of terrestrial ecosystems to potential changes in precipitation. Bioscience 53:941–952CrossRef
    3.Harpole WS, Potts DL, Suding KN (2007) Ecosystem responses to water and nitrogen amendment in a California grassland. Glob Chang Biol 13:2341–2348CrossRef
    4.Galloway JN, Townsend AR, Erisman JW et al (2008) Transformation of the nitrogen cycle: recent trends, questions, and potential solutions. Science 320:889–892CrossRef PubMed
    5.Schlesinger WH (2009) On the fate of anthropogenic nitrogen. Proc Natl Acad Sci U S A 106:203–208CrossRef PubMed PubMedCentral
    6.Canfield DE, Bittinger K, Bushman FD, DeSantis TZ, Andersen GL, Knight R (2010) The evolution and future of Earth’s nitrogen cycle. Science 330:192–196CrossRef PubMed
    7.Manning P, Newington JE, Robson HR et al (2006) Decoupling the direct and indirect effects of nitrogen deposition on ecosystem function. Ecol Lett 9:1015–1024CrossRef PubMed
    8.Clark CM, Tilman D (2008) Loss of plant species after chronic low-level nitrogen deposition to prairie grasslands. Nature 451:712–715CrossRef PubMed
    9.Bai Y, Wu J, Clark CM et al (2010) Tradeoffs and thresholds in the effects of nitrogen addition on biodiversity and ecosystem functioning: evidence from inner Mongolia Grasslands. Glob Chang Biol 16:358–372CrossRef
    10.Bobbink R, Hicks K, Galloway J et al (2010) Global assessment of nitrogen deposition effects on terrestrial plant diversity: a synthesis. Ecol Appl 20:30–59CrossRef PubMed
    11.Ramirez KS, Craine JM, Fierer N (2012) Consistent effects of nitrogen amendments on soil microbial communities and processes across biomes. Glol Chang Biol 18:1918–1927CrossRef
    12.Gough L, Osenberg CW, Gross KL, Collins SL (2000) Fertilization effects on species density and primary productivity in herbaceous plant communities. Oikos 89:428–439CrossRef
    13.Lebauer DS, Treseder KK (2008) Nitrogen limitation of net primary productivity in terrestrial ecosystems is globally distributed. Ecology 89:371–379CrossRef PubMed
    14.Stevens CJ, Dise NB, Mountford JO, Gowing DJ (2004) Impact of nitrogen deposition on the species richness of grasslands. Science 303:1876–1879CrossRef PubMed
    15.Huntington TG (2006) Evidence for intensification of the global water cycle: review and synthesis. J Hydrol 319:83–95CrossRef
    16.Burke IC, Lauenroth WK, Parton WJ (1997) Regional and temporal variation in net primary production and nitrogen mineralization in grasslands. Ecology 78:1330–1340CrossRef
    17.Wang R, Filley TR, Xu Z et al (2014) Coupled response of soil carbon and nitrogen pools and enzyme activities to nitrogen and water addition in a semi-arid grassland of Inner Mongolia. Plant Soil 381:323–336CrossRef
    18.Dukes JS, Chiariello NR, Cleland EE et al (2005) Responses of grassland production to single and multiple global environmental changes. PLoS Biol 3:1829CrossRef
    19.Yang H, Li Y, Wu M, Zhang Z, Li L, Wan S (2011) Plant community responses to nitrogen addition and increased precipitation: the importance of water availability and species traits. Glob Chang Biol 17:2936–2944CrossRef
    20.Bi J, Zhang N, Liang Y, Yang H, Ma K (2012) Interactive effects of water and nitrogen addition on soil microbial communities in a semiarid steppe. J Plant Ecol 5:320–329CrossRef
    21.Niu S, Yang H, Zhang Z et al (2009) Non-additive effects of water and nitrogen addition on ecosystem carbon exchange in a temperate steppe. Ecosystems 12:915–926CrossRef
    22.Phoenix GK, Emmett BA, Britton AJ et al (2012) Impacts of atmospheric nitrogen deposition: responses of multiple plant and soil parameters across contrasting ecosystems in long‐term field experiments. Glol Chang Biol 18:1197–1215CrossRef
    23.Van den Berg LJ, Vergeer P, Rich TC, Smart SM, Guest D, Ashmore MR (2011) Direct and indirect effects of nitrogen deposition on species composition change in calcareous grasslands. Glob Chang Biol 17:1871–1883CrossRef
    24.Xu Z, Wan S, Ren H, Han X, Jiang Y (2012) Influences of land use history and short-term nitrogen addition on community structure in temperate grasslands. J Arid Environ 87:103–109CrossRef
    25.Xu Z, Wan S, Ren H et al (2012) Effects of water and nitrogen addition on species turnover in temperate grasslands in northern China. PLoS One 7:e39762CrossRef PubMed PubMedCentral
    26.Nie M, Pendall E, Bell C et al (2013) Positive climate feedbacks of soil microbial communities in a semi‐arid grassland. Ecol Lett 16:234–241CrossRef PubMed
    27.Chung H, Zak DR, Reich PB, Ellsworth DS (2007) Plant species richness, elevated CO2, and atmospheric nitrogen deposition alter soil microbial community composition and function. Glob Chang Biol 13:980–989CrossRef
    28.Fierer N, Bradford MA, Jackson RB (2007) Toward an ecological classification of soil bacteria. Ecology 88:1354–1364CrossRef PubMed
    29.Zhang X, Wei H, Chen Q et al (2014) The counteractive effects of nitrogen addition and watering on soil bacterial communities in a steppe ecosystem. Soil Biol Biochem 72:26–34CrossRef
    30.Clark JS, Campbell JH, Grizzle H, Acosta-Martìnez V, Zak JC (2009) Soil microbial community response to drought and precipitation variability in the Chihuahuan Desert. Microbial Ecol 57:248–260CrossRef
    31.Evans SE, Wallenstein MD (2014) Climate change alters ecological strategies of soil bacteria. Ecol Lett 17:155–164CrossRef PubMed
    32.Wardle DA, Bardgett RD, Klironomos JN, Setälä H, Van Der Putten WH, Wall DH (2004) Ecological linkages between aboveground and belowground biota. Science 304:1629–1633CrossRef PubMed
    33.De Deyn GB, Van der Putten WH (2005) Linking aboveground and belowground diversity. Trends Ecol Evol 20:625–633CrossRef PubMed
    34.Bardgett RD, Wardle DA (2010) Aboveground-belowground linkages: biotic interactions, ecosystem processes and global change. Oxford series in ecology and evolution. Oxford University Press, Oxford
    35.Van der Heijden MG, Klironomos JN, Ursic M et al (1998) Mycorrhizal fungal diversity determines plant biodiversity, ecosystem variability and productivity. Nature 396:69–72CrossRef
    36.Van der Heijden MG, Bakker R, Verwaal J et al (2006) Symbiotic bacteria as a determinant of plant community structure and plant productivity in dune grassland. FEMS Microbiol Ecol 56:178–187CrossRef PubMed
    37.Kowalchuk GA, Buma DS, de Boer W, Klinkhamer PG, van Veen JA (2002) Effects of above-ground plant species composition and diversity on the diversity of soil-borne microorganisms. Anton Leeuw Int J G 81:509–520CrossRef
    38.Zak DR, Holmes WE, White DC et al (2003) Plant diversity, soil microbial communities, and ecosystem function: are there any links? Ecology 84:2042–2050CrossRef
    39.Prober SM, Leff JW, Bates ST et al (2015) Plant diversity predicts beta but not alpha diversity of soil microbes across grasslands worldwide. Ecol Lett 18:85–95CrossRef PubMed
    40.Kang L, Han X, Zhang Z et al (2007) Grassland ecosystems in China: review of current knowledge and research advancement. Phil Transac Royal Soc London B: Biol Sci 362:997–1008CrossRef
    41.Xu Z, Wan S, Zhu G, Ren H, Han X (2010) The influence of historical land use and water availability on grassland restoration. Restor Ecol 18:217–225CrossRef
    42.Sun Y, Ding Y (2010) A projection of future changes in summer precipitation and monsoon in East Asia. Sci China Ser D 53:284–300CrossRef
    43.Zhang Y, Zheng LX, Liu XJ et al (2008) Evidence for organic N deposition and its anthropogenic sources in China. Atmos Environ 42:1035–1041CrossRef
    44.Xu Z, Ren H, Cai J et al (2014) Effects of experimentally-enhanced precipitation and nitrogen on resistance, recovery and resilience of a semi-arid grassland after drought. Oecologia 176:1187–1197CrossRef PubMed
    45.Xu Z, Ren H, Li MH et al (2015) Environmental changes drive the temporal stability of semi‐arid natural grasslands through altering species asynchrony. J Ecol 103:1308–1316CrossRef
    46.Chen S, Lin G, Huang J et al (2009) Dependence of carbon sequestration on the differential responses of ecosystem photosynthesis and respiration to rain pulses in a semiarid steppe. Glob Chang Biol 15:2450–2461CrossRef
    47.Vance E, Brookes P, Jenkinson D (1987) An extraction method for measuring soil microbial biomass C. Soil Biol Biochem 19:703–707CrossRef
    48.Gershenson A, Bader NE, Cheng W (2009) Effects of substrate availability on the temperature sensitivity of soil organic matter decomposition. Glol Chang Biol 15:176–183CrossRef
    49.Kiviniemi K, Eriksson O (2002) Size‐related deterioration of semi-natural grassland fragments in Sweden. Divers Distrib 8:21–29CrossRef
    50.Caporaso JG, Lauber CL, Walters WA et al (2012) Ultra-high-throughput microbial community analysis on the Illumina HiSeq and MiSeq platforms. ISME J 6:1621–1624CrossRef PubMed PubMedCentral
    51.Magoč T, Salzberg SL (2011) FLASH: fast length adjustment of short reads to improve genome assemblies. Bioinformatics 27:2957–2963CrossRef PubMed PubMedCentral
    52.Caporaso JG, Kuczynski J, Stombaugh J et al (2010) QIIME allows analysis of high-throughput community sequencing data. Nat Methods 7:335–336CrossRef PubMed PubMedCentral
    53.Edgar RC (2013) UPARSE: highly accurate OTU sequences from microbial amplicon reads. Nat Methods 10:996–998CrossRef PubMed
    54.Wang Q, Garrity GM, Tiedje JM, Cole JR (2007) Naive Bayesian classifier for rapid assignment of rRNA sequences into the new bacterial taxonomy. Appl Environ Microb 73:5261–5267CrossRef
    55.McDonald D, Price MN, Goodrich J et al (2012) An improved Greengenes taxonomy with explicit ranks for ecological and evolutionary analyses of bacteria and archaea. ISME J 6:610–618CrossRef PubMed PubMedCentral
    56.Caporaso JG, Bittinger K, Bushman FD et al (2010) PyNAST: a flexible tool for aligning sequences to a template alignment. Bioinformatics 26:266–267CrossRef PubMed PubMedCentral
    57.DeSantis TZ, Hugenholtz P, Larsen N et al (2006) Greengenes, a chimera-checked 16S rRNA gene database and workbench compatible with ARB. Appl Environ Microb 72:5069–5072CrossRef
    58.Price MN, Dehal PS, Arkin AP (2010) FastTree 2-approximately maximum-likelihood trees for large alignments. PLoS One 5:e9490CrossRef PubMed PubMedCentral
    59.Faith DP (1992) Conservation evaluation and phylogenetic diversity. Biol Conserv 61:1–10CrossRef
    60.Chao A (1987) Estimating the population size for capture-recapture data with unequal catchability. Biometrics 43:783–791CrossRef PubMed
    61.Shannon CE (1948) A mathematical theory of communication. Bell Syst Tech J 27:379–423, 623–56 CrossRef
    62.Oksanen J, Blanchet FG, Kindt R et al (2013) Vegan: community ecology package. R Package Version 2:10
    63.Hamady M, Lozupone C, Knight R (2010) Fast UniFrac: facilitating high-throughput phylogenetic analyses of microbial communities including analysis of pyrosequencing and PhyloChip data. ISME J 4:17–27CrossRef PubMed PubMedCentral
    64.Clarke K, Warwick R (2001) Change in marine communities: an approach to statistical analysis and interpretation, 2nd edn. PRIMER-E Ltd, Plymouth, United Kingdom
    65.Van der Heijden MG, Bardgett RD, Van Straalen NM (2008) The unseen majority: soil microbes as drivers of plant diversity and productivity in terrestrial ecosystems. Ecol Lett 11:296–10CrossRef PubMed
    66.Broughton L, Gross K (2000) Patterns of diversity in plant and soil microbial communities along a productivity gradient in a Michigan old-field. Oecologia 125:420–427CrossRef
    67.Li H, Wang XG, Liang C et al (2015) Aboveground-belowground biodiversity linkages differ in early and late successional temperate forests. Sci Rep 5:12234CrossRef PubMed PubMedCentral
    68.Cleland EE, Harpole WS (2010) Nitrogen enrichment and plant communities. Ann Ny Acad SCI 1195:46–61CrossRef PubMed
    69.Zhang X, Han X (2012) Nitrogen deposition alters soil chemical properties and bacterial communities in the Inner Mongolia grassland. J Environ Sci-CHINA 24:1483–1491CrossRef PubMed
    70.Guo J, Liu X, Zhang Y et al (2010) Significant acidification in major Chinese croplands. Science 327:1008–1010CrossRef PubMed
    71.Lauber CL, Hamady M, Knight R et al (2009) Soil pH as a predictor of soil bacterial community structure at the continental scale: a pyrosequencing-based assessment. Appl Environ Microb 75:5111–5120CrossRef
    72.Zhang X, Liu W, Zhang G, Jiang L, Han X (2015) Mechanisms of soil acidification reducing bacterial diversity. Soil Biol Biochem 81:275–281CrossRef
    73.Meier CL, Bowman WD (2008) Links between plant litter chemistry, species diversity, and below-ground ecosystem function. Proc Natl Acad Sci U S A 105:19780–19785CrossRef PubMed PubMedCentral
    74.Allison SD, Lu Y, Weihe C et al (2013) Microbial abundance and composition influence litter decomposition response to environmental change. Ecology 94:714–725CrossRef PubMed
    75.Waldrop MP, Zak DR (2006) Response of oxidative enzyme activities to nitrogen deposition affects soil concentrations of dissolved organic carbon. Ecosystems 9:921–933CrossRef
    76.Treseder KK (2008) Nitrogen additions and microbial biomass: a meta‐analysis of ecosystem studies. Ecol Lett 11:1111–1120CrossRef PubMed
    77.Wei C, Yu Q, Bai E et al (2013) Nitrogen deposition weakens plant–microbe interactions in grassland ecosystems. Glob Chang Biol 19:3688–3697CrossRef PubMed
    78.Campbell BJ, Polson SW, Hanson TE, Mack MC, Schuur EA (2010) The effect of nutrient deposition on bacterial communities in Arctic tundra soil. Environ Microbiol 12:1842–1854CrossRef PubMed
    79.Ramirez KS, Lauber CL, Knight R et al (2010) Consistent effects of nitrogen fertilization on soil bacterial communities in contrasting systems. Ecology 91:3463–3470CrossRef PubMed
    80.Chu H, Fierer N, Lauber CL et al (2010) Soil bacterial diversity in the Arctic is not fundamentally different from that found in other biomes. Environ Microbiol 12:2998–3006CrossRef PubMed
    81.Li H, Ye DD, Wang XG et al (2014) Bacterial communities in soils under different types of natural forest in Northeast China. Plant Soil 383:203–216CrossRef
    82.Austin AT, Yahdjian L, Stark JM et al (2004) Water pulses and biogeochemical cycles in arid and semiarid ecosystems. Oecologia 141:221–235CrossRef PubMed
    83.Schimel J, Balser TC, Wallenstein M (2007) Microbial stress-response physiology and its implications for ecosystem function. Ecology 88:1386–1394CrossRef PubMed
    84.Butterly C, Bünemann E, McNeill A et al (2009) Carbon pulses but not phosphorus pulses are related to decreases in microbial biomass during repeated drying and rewetting of soils. Soil Biol Biochem 41:1406–1416CrossRef
    85.Tiemann LK, Billings SA (2012) Tracking C and N flows through microbial biomass with increased soil moisture variability. Soil Biol Biochem 49:11–22CrossRef
    86.Allison SD, Martiny JB (2008) Resistance, resilience, and redundancy in microbial communities. Proc Natl Acad Sci U S A 105:11512–11519CrossRef PubMed PubMedCentral
    87.Tiemann LK, Billings SA (2011) Changes in variability of soil moisture alter microbial community C and N resource use. Soil Biol Biochem 43:1837–1847CrossRef
    88.Borken W, Matzner E (2009) Reappraisal of drying and wetting effects on C and N mineralization and fluxes in soils. Glob Chang Biol 15:808–824CrossRef
    89.Dijkstra FA, Augustine DJ, Brewer P, von Fischer JC (2012) Nitrogen cycling and water pulses in semiarid grasslands: are microbial and plant processes temporally asynchronous? Oecologia 170:799–808CrossRef PubMed
    90.Jaakkola A (1984) Leaching losses of nitrogen from a clay soil under grass and cereal crops in Finland. Plant Soil 76:59–66CrossRef
    91.McCulley RL, Burke IC, Lauenroth WK (2009) Conservation of nitrogen increases with precipitation across a major grassland gradient in the Central Great Plains of North America. Oecologia 159:571–581CrossRef PubMed
    92.Aber J, McDowell W, Nadelhoffer K et al (1998) Nitrogen saturation in temperate forest ecosystems. Bioscience 48:921–934CrossRef
  • 作者单位:Hui Li (1)
    Zhuwen Xu (1)
    Shan Yang (1) (2)
    Xiaobin Li (1) (3)
    Eva M. Top (4)
    Ruzhen Wang (1)
    Yuge Zhang (2)
    Jiangping Cai (1) (3)
    Fei Yao (1) (3)
    Xingguo Han (1)
    Yong Jiang (1)

    1. State Key Laboratory of Forest and Soil Ecology, Institute of Applied Ecology, Chinese Academy of Sciences, No.72 Wenhua Road, Shenyang, 110016, China
    2. College of Environmental Science, Shenyang University, Shenyang, 110044, China
    3. University of Chinese Academy of Sciences, Beijing, 100049, China
    4. Department of Biological Sciences, Institute for Bioinformatics and Evolutionary Studies (IBEST), University of Idaho, Moscow, ID, 83844, USA
  • 刊物类别:Biomedical and Life Sciences
  • 刊物主题:Life Sciences
    Microbiology
    Ecology
    Geoecology and Natural Processes
    Nature Conservation
  • 出版者:Springer New York
  • ISSN:1432-184X
文摘
It has been predicted that precipitation and atmospheric nitrogen (N) deposition will increase in northern China; yet, ecosystem responses to the interactive effects of water and N remain largely unknown. In particular, responses of belowground microbial community to projected global change and their potential linkages to aboveground macro-organisms are rarely studied. In this study, we examined the responses of soil bacterial diversity and community composition to increased precipitation and multi-level N deposition in a temperate steppe in Inner Mongolia, China, and explored the diversity linkages between aboveground and belowground communities. It was observed that N addition caused the significant decrease in bacterial alpha-diversity and dramatic changes in community composition. In addition, we documented strong correlations of alpha- and beta-diversity between plant and bacterial communities in response to N addition. It was found that N enriched the so-called copiotrophic bacteria, but reduced the oligotrophic groups, primarily by increasing the soil inorganic N content and carbon availability and decreasing soil pH. We still highlighted that increased precipitation tended to alleviate the effects of N on bacterial diversity and dampen the plant-microbe connections induced by N. The counteractive effects of N addition and increased precipitation imply that even though the ecosystem diversity and function are predicted to be negatively affected by N deposition in the coming decades; the combination with increased precipitation may partially offset this detrimental effect.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700