用户名: 密码: 验证码:
Frontier research of ultra-high-speed ultra-large-capacity and ultra-long-haul optical transmission
详细信息    查看全文
  • 作者:Daojun Xue ; Shaohua Yu ; Qi Yang ; Nan Chi ; Lan Rao…
  • 关键词:ultra ; high ; speed ; ultra ; large ; capacity ; ultralong ; haul ; optical transmission ; high spectral efficiency ; parametric amplification ; dispersion management
  • 刊名:Frontiers of Optoelectronics in China
  • 出版年:2016
  • 出版时间:June 2016
  • 年:2016
  • 卷:9
  • 期:2
  • 页码:123-137
  • 全文大小:3,261 KB
  • 参考文献:1.Zhang H, Cai J X, Batshon H G, Mazurczyk M V, Sinkin O, Foursa D G, Pilipetskii A, Mohs G, Bergano N S. 200 Gb/s and dual wavelength 400 Gb/s transmission over transpacific distance at 6.0 b/s/Hz spectral efficiency. In: Processing of OFC, 2013, Paper PDP5A.6
    2.Yu J, Zhang J, Dong Z, Jia Z, Chien H C, Cai Y, Xiao X, Li X. Transmission of 8 480-Gb/s super-Nyquist-filtering 9-QAM-like signal at 100 GHz-grid over 5000-km SMF-28 and twenty-five 100 GHz-grid ROADMs. Optics Express, 2013, 21(13): 15686–15691CrossRef
    3.Zhang J, Yu J, Chi N. Generation and transmission of 512-Gb/s quad-carrier digital super-Nyquist spectral shaped signal. Optics Express, 2013, 21(25): 31212–31217CrossRef
    4.Porto da Silva E, Carvalho L, Franciscangelis C, Diniz J, Oliveira J, Bordonalli A. Spectrally-efficient 448-Gb/s dual-carrier PDM-16QAM channel in a 75-GHz grid. In: Processing of OFC, 2013, paper JTh2A.39
    5.Zhang J, Chien H, Dong Z, Xiao J. Transmission of 480-Gb/s dualcarrier PM-8QAM over 2550 km SMF-28 using adaptive preequalization. In: Processing of OFC, 2014, paper Th4F.6
    6.Zhou X, Nelson L, Magill P, Issac R, Zhu B, Peckham D, Borel P, Carlson K. 4000 km transmission of 50 GHz spaced, 10-494.85-Gb/s hybrid 32-64QAM using cascaded equalization and trainingassisted phase recovery. In: Processing of OFC 2012, paper PDP5C.6
    7.Cai J X, Davidson C R, Lucero A J, Zhang H, Foursa D G, Sinkin O V, Patterson W W, Pilipetskii A N, Mohs G, Bergano N S. 20 Tbit/s transmission over 6860 km with sub-Nyquist channel spacing. Journal of Lightwave Technology, 2012, 30(4): 651–657CrossRef
    8.Zhang J, Yu J, Jia Z, Chien H C. 400 G transmission of super-Nyquist-filtered signal based on single-carrier 110-GBaud PDM QPSK with 100-GHz grid. Journal of Lightwave Technology, 2014, 32(19): 3239–3246CrossRef
    9.Kuo B P P, Myslivets E, Alic N, Radic S. Wavelength multicasting via frequency comb generation in a bandwidth-enhanced fiber optical parametric mixer. Journal of Lightwave Technology, 2011, 29(23): 3515–3522CrossRef
    10.Slavík R, Parmigiani F, Kakande J, Lundström C, Sjödin M, Andrekson P A, Weerasuriya R, Sygletos S, Ellis A D, Grüner-Nielsen L, Jakobsen D, Herstrøm S, Phelan R, O’Gorman J, Bogris A, Syvridis D, Dasgupta S, Petropoulos P, Richardson D J. Alloptical phase and amplitude regeneration for next-generation telecommunications system. Nature Photonics, 2010, 4(10): 690–695CrossRef
    11.Torounidis T, Andrekson PA, Olsson B E. Fiber-optical parametric amplifier with 70 dB gain. IEEE Photonics Technology Letters, 2006, 18(10): 1194–1196CrossRef
    12.Tong Z, Lundstrom C, Andrekson PA, McKinstrie C J, Karlsson M, Blessing D J, Tipsuwannaku E, Puttnam B J, Todaand H, Gruner-Nielsen L. Towards ultrasensitive optical links enabled by lownoise phase-sensitive amplifiers. Nature Photonics, 2011, 79(10): 1038
    13.Zhang J, Yu J, Chi N, Dong Z, Yu J, Li X, Tao L, Shao Y. Multimodulus blind equalizations for coherent quadrature duobinary spectrum shaped PM-QPSK digital signal processing. Journal of Lightwave Technology, 2013, 31(7): 1073–1078CrossRef
    14.Zhang J, Huang B, Li X. Improved quadrature duobinary system performance using multi-modulus equalization. Photonic Technology Letters, 2013, 25(16): 1630–1633CrossRef
    15.Rao L, Yu C X, Shen XW, Sang X Z, Yuan J H, Zeng X F, Xin X J. Investigation on gain characteristics in non-degenerate cascaded phase sensitive parametric amplifiers. Optoelectronics Letters, 2012, 8(3): 172–175CrossRef
    16.Yuan J H, Sang X Z, Wu Q, Yu C X, Wang K R, Yan B B, Shen X W, Han Y, Zhou G Y, Semenova Y, Farrell G, Hou L T. Efficient red-shifted dispersive wave in a photonic crystal fiber for widely tunable mid-infrared wavelength generation. Laser Physics Letters, 2013, 10(4): 045405CrossRef
    17.Yuan J H, Sang X Z, Wu Q, Yu C X, Zhou G Y, Shen XW, Wang K R, Yan B B, Teng Y L, Xia C M, Han Y, Li S G, Farrell G, Hou LT. Widely tunable broadband deep-ultraviolet to visible wavelength generation by the cross phase modulation in a hollow-core photonic crystal fiber cladding. Laser Physics Letters, 2013, 10(8): 085402CrossRef
    18.Yuan J H, Sang X Z, Yu C X, Han Y, Zhou G Y, Li S G, Hou L T. Highly efficient anti-Stokes signal conversion by pumping in the normal and anomalous dispersion regions in the fundamental mode of photonic crystal fiber. Journal of Lightwave Technology, 2011, 29(19): 2920–2926CrossRef
    19.Yuan J, Zhou G, Liu H, Xia C, Sang X, Wu Q, Yu C, Wang K, Yan B, Han Y, Farrell G, Hou L. Coherent anti-Stokes Raman scattering microscopy by dispersive wave generations in a polarization maintaining photonic crystal fiber. Progress In Electromagnetics Research-PIER, 2013, 141: 659–670CrossRef
    20.Zong L, Luo F, Cui S, Cao X. Rapid and accurate chromatic dispersion measurement of fiber using asymmetric Sagnac interferometer. Optics Letters, 2011, 36(5): 660–662CrossRef
    21.Zong L, Luo F, Wang Y, Cao X. Dispersion compensation module for 100 Gbit/s optical system and beyond. Optical Fiber Technology, 2011, 17(3): 227–232CrossRef
    22.Cui S, Sun S, Li L, Ke C, Wan Z, Liu D. All-optical highly sensitive chromatic dispersion monitoring method utilizing phase-matched four-wave mixing. IEEE Photonics Technology Letters, 2011, 23(22): 1724–1726CrossRef
    23.Cheng H, Li W, Fan Y, Zhang Z, Yu S, Yang Z. A novel fiber nonlinearity suppression method in DWDM optical fiber transmission systems with an all-optical pre-distortion module. Optics Communications, 2013, 290(1): 152–157CrossRef
    24.Yang Q, Xiao X, Li C, Luo M, He Z, Li C, Hu R, Zhang X, Yu S. 168-103 Gb/s 25-GHz-spaced C-band transmission over 2240 km SSMF with improved nonlinearity using DFT-S OFDM-8PSK modulation. In: Processing of Asia Communications and Photonics Conference, 2012, PDP paper AF4C.3
    25.Yang Q, He Z, Liu W, Yang Z, Yu S, Shieh W, Djordjevic I B. 1-Tb/ s large girth LDPC-coded coherent optical OFDM transmission over 1040-km standard single-mode fiber. In: Processing of OFC, 2011, paper JThA035
    26.Li C, Luo M, Xiao X, Li J, He Z, Yang Q, Yang Z, Yu S. 63-Tb/s (368-183.3-Gb/s) C-and L-band all-Raman transmission over 160-km SSMF using OFDM-16QAM modulation. Chinese Optics Letters, 2014, 12(4): 040601–040604CrossRef
    27.Luo M, Li C, Yang Q, He Z, Xu J, Zhang Z, Yu S. 100.3-Tb/s (375×267.27-Gb/s) C-and L-band transmission over 80-km SSMF using DFT-S OFDM 128-QAM. In: Processing of Asia Communications and Photonics Conference, 2014, PDP paper AF4B.1
    28.Luo M, Mo Q, Li X, Hu R, Qiu Y, Li C, Liu Z, Liu W, Yu H, Du W, Xu J, He Z, Yang Q, Yu S. Transmission of 200 Tb/s (375×3×178.125 Gb/s) PDM-DFTS-OFDM-32QAM super channel over 1 km FMF. Frontiers of Optoelectronics, 2015, 8(4): 394–401CrossRef
    29.Li C, Djordjevic I B, Luo M, He Z, Liu W, Yang Q, Xiao X, Xue D, Yu S, Shieh W. Ultra long-haul transmission of a 1-Tb/s LDPCcoded DFT-S OFDM-8PSK superchannel over 12160 km. In: Processing of Asia Communications and Photonics Conference, 2013, PDP Paper AF2C.2
    30.Luo M, Zhang Z, Li C, Xu J, Zhang X, Li J, He Z, Hu R, Yang Q, Yu S. Real-time single laser based 3.2 Tb/s (32×100-Gb/s) PM-QPSK transmission using coherent detection over 2080-km SSMF. In: Processing of Asia Communications and Photonics Conference 2014, paper ATh4E.2
    31.Li C, Zhang X, Li H, Li C, Luo M, Li Z, Xu J, Yang Q, Yu S. Experimental demonstration of 429.96-Gb/s OFDM /OQAM-64QAM over 400-km SSMF transmission within a 50-GHz Grid. IEEE Photonics Journal, 2014, 6(4): 1–8
    32.Zeng T, Pan Y, Luo M, Wang Y, Hu R, Yang Q, Yu S. The manipulated rotating BPSK technique compatible with conventional CMA algorithm. In: Processing of OFC 2015, paper TH2A.1
  • 作者单位:Daojun Xue (1)
    Shaohua Yu (1)
    Qi Yang (1)
    Nan Chi (2)
    Lan Rao (3)
    Xiangjun Xin (3)
    Wei Li (4)
    Songnian Fu (5)
    Sheng Cui (5)
    Demin Liu (5)
    Zhuo Li (6)
    Aijun Wen (6)
    Chongxiu Yu (3)
    Xinmei Wang (6)

    1. State Key Laboratory of Optical Communication Technologies and Networks, Wuhan Research Institute of Posts and Telecommunications, Wuhan, 430074, China
    2. School of Information Science and Technology, Fudan University, Shanghai, 200433, China
    3. State Key Laboratory of Information Photonics and Optical Communications, Beijing University of Posts and Telecommunications, Beijing, 100876, China
    4. Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan, 430074, China
    5. School of Optics and Electronic Information, Huazhong University of Science and Technology, Wuhan, 430074, China
    6. State Key Laboratory of Integrated Services Networks, Xidian University, Xi’an, 710126, China
  • 刊物类别:Engineering
  • 刊物主题:Electronic and Computer Engineering
    Electromagnetism, Optics and Lasers
    Biomedical Engineering
    Chinese Library of Science
  • 出版者:Higher Education Press, co-published with Springer-Verlag GmbH
  • ISSN:2095-2767
文摘
Ultra-high-speed, ultra-large-capacity and ultra-long-haul (3U) are the forever pursuit of optical communication. As a new mode of optical communication, 3U transmission can greatly promote next generation optical internet and broadband mobile communication network development and technological progress, therefore it has become the focus of international high-tech intellectual property competition ground. This paper introduces the scientific problems, key technologies and important achievements in 3U transmission research.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700