用户名: 密码: 验证码:
Controlling the Diameter of Single-Walled Carbon Nanotubes by Improving the Dispersion of the Uniform Catalyst Nanoparticles on Substrate
详细信息    查看全文
  • 作者:Junjun Chen ; Xiangju Xu ; Lijie Zhang ; Shaoming Huang
  • 关键词:Single ; walled carbon nanotube ; Diameter control ; Chemical modification ; Chemical vapor deposition ; Catalyst nanoparticles
  • 刊名:Nano-Micro Letters
  • 出版年:2015
  • 出版时间:October 2015
  • 年:2015
  • 卷:7
  • 期:4
  • 页码:353-359
  • 全文大小:1,526 KB
  • 参考文献:1.S. Iijima, Helical microtubules of graphitic carbon. Nature 354, 56鈥?8 (1991). doi:10.鈥?038/鈥?54056a0 CrossRef
    2.J. Li, W. Yue, Z. Guo, Y. Yang, X. Wang, A.A. Syed, Y. Zhang, Unique characteristics of vertical carbon nanotube field-effect transistors on silicon. Nano-Micro Lett. 6(3), 287鈥?92 (2014). doi:10.鈥?101/鈥媙ml140031a
    3.M.F.L. De Volder, S.H. Tawfick, R.H. Baughman, A.J. Hart, Carbon nanotubes: present and future commercial applications. Science 339(6119), 535鈥?39 (2013). doi:10.鈥?126/鈥媠cience.鈥?222453 CrossRef
    4.Q. Wei, Y. Liu, L. Zhang, S. Huang, Growth and formation mechanism of branched carbon nanotubes by pyrolysis of iron(II) phthalocyanine. Nano-Micro Lett. 5(2), 124鈥?28 (2013). doi:10.鈥?101/鈥媙ml.鈥媣5i2.鈥媝124-128
    5.M.S. Dresselhaus, G. Dresselhaus, P. Avouris, Carbon Nanotubes Synthesis, Structure, Properties, and Applications (Springer, New York, 2001)
    6.T.W. Ebbesen, P.M. Ajayan, Large-scale synthesis of carbon nanotubes. Nature 358, 220鈥?22 (1992). doi:10.鈥?038/鈥?58220a0 CrossRef
    7.T. Guo, P. Nikolaev, A.G. Rinzler, D. TomBnek, D.T. Colbert, R.E. Smalley, Self-assembly of tubular fullerenes. J. Phys. Chem. B 99(27), 10694鈥?0699 (1995). doi:10.鈥?021/鈥媕100027a002 CrossRef
    8.M. Su, B. Zheng, J. Liu, A scalable CVD method for the synthesis of single walled carbon nanotubes with high catalyst productivity. Chem. Phys. Lett. 322(5), 321鈥?24 (2000). doi:10.鈥?016/鈥婼0009-2614(00)00422-X CrossRef
    9.S.M. Huang, X.Y. Cai, J. Liu, Growth of millimeter-long and horizontally aligned SWNT on flat substrates. J. Am. Chem. Soc. 125(19), 5636鈥?637 (2003). doi:10.鈥?021/鈥媕a034475c CrossRef
    10.J.W.G. Wild脰er, L.C. Venema, A.G. Rinzler, R.E. Smalley, C. Dekker, Electronic structure of atomically resolved carbon nanotubes. Nature 391, 59鈥?2 (1998). doi:10.鈥?038/鈥?4139 CrossRef
    11.T.W. Odom, J.L. Huang, P. Kim, C.M. Lieber, Atomic structure and electronic properties of single-walled carbon nanotubes. Nature 391, 62鈥?4 (1998). doi:10.鈥?038/鈥?4145 CrossRef
    12.H.S. Cheng, A.C. Copper, G.P. Pez, M.K. Kistov, P. Piotrowski, S.J. Stuart, Molecular dynamics simulations on the effects of diameter and chirality on hydrogen adsorption in single walled carbon nanotubes. J. Phys. Chem. B 109(9), 3780鈥?786 (2005). doi:10.鈥?021/鈥媕p045358m CrossRef
    13.X. Tu, S. Manohar, A. Jagota, M. Zheng, DNA sequence motifs for structure-specific recognition and separation of carbon nanotubes. Nature 460, 250鈥?53 (2009). doi:10.鈥?038/鈥媙ature08116 CrossRef
    14.H. Liu, T. Tanaka, Y. Urabe, H. Kataura, High-efficiency single-chirality separation of carbon nanotubes using temperature-controlled gel chromatography. Nano Lett. 13(5), 1996鈥?003 (2013). doi:10.鈥?021/鈥媙l400128m CrossRef
    15.G. Hong, M. Zhou, R. Zhang, S. Hou, W. Choi et al., Separation of metallic and semiconducting single-walled carbon nanotube arrays by scotch tape. Angew. Chem. Int. Ed. 50(30), 6819鈥?823 (2011). doi:10.鈥?002/鈥媋nie.鈥?01101700 CrossRef
    16.Q. Wang, H. Wang, L. Wei, S.-W. Yang, Y. Chen, Reactive sites for chiral selective growth of single-walled carbon nanotubes: a DFT study of Ni55鈥揅n complexes. J. Phys. Chem. A 116(47), 11709鈥?1717 (2012). doi:10.鈥?021/鈥媕p308115f CrossRef
    17.D. Dutta, W.-H. Chiang, R.M. Sankaran, V.R. Bhethanabotla, Epitaxial nucleation model for chiral-selective growth of single-walled carbon nanotubes on bimetallic catalyst surfaces. Carbon 50(10), 3766鈥?773 (2012). doi:10.鈥?016/鈥媕.鈥媍arbon.鈥?012.鈥?3.鈥?51 CrossRef
    18.M. He, P.V. Fedotov, E.D. Obraztsova, V. Viitanen, J. Sainio et al., Chiral-selective growth of single-walled carbon nanotubes on stainless steel wires. Carbon 50(11), 4294鈥?297 (2012). doi:10.鈥?016/鈥媕.鈥媍arbon.鈥?012.鈥?5.鈥?07 CrossRef
    19.W.-H. Chiang, R.M. Sankaran, Linking catalyst composition to chirality distributions of as-grown single-walled carbon nanotubes by tuning Ni(x)fe(1-x) nanoparticles. Nat. Mater. 8, 882鈥?86 (2009). doi:10.鈥?038/鈥媙mat2531 CrossRef
    20.S.M. Bachilo, L. Balzano, J.E. Herrera, F. Pompeo, D.E. Resasco, R.B. Weisman, Narrow (n,m)-distribution of single-walled carbon nanotubes grown using a solid supported catalyst. J. Am. Chem. Soc. 125(37), 11186鈥?1187 (2003). doi:10.鈥?021/鈥媕a036622c CrossRef
    21.B. Liu, W. Ren, S. Li, C. Liu, H.M. Cheng, High temperature selective growth of single-walled carbon nanotubes with a narrow chirality distribution from a CoPt bimetallic catalyst. Chem. Commun. 48(18), 2409鈥?411 (2012). doi:10.鈥?039/鈥媍2cc16491d CrossRef
    22.M. He, A.I. Chernov, P.V. Fedotov, E.D. Obraztsova, J. Sainio et al., Predominant (6,5) single-walled carbon nanotube growth on a copper-promoted iron catalyst. J. Am. Chem. Soc. 132(40), 13994鈥?3996 (2010). doi:10.鈥?021/鈥媕a106609y CrossRef
    23.W.-H. Chiang, M. Sakr, X.P.A. Gao, R.M. Sankaran, Nanoengineering NixFe1-x catalysts for gas-phase, selective synthesis of semiconducting single-walled carbon nanotubes. ACS Nano 3(12), 4023鈥?032 (2009). doi:10.鈥?021/鈥媙n901222t CrossRef
    24.M. He, H. Jiang, B. Liu, P.V. Fedotov, A.I. Chernov et al., Chiral-selective growth of single-walled carbon nanotubes on lattice-mismatched epitaxial cobalt nanoparticles. Sci. Rep. 3, 1460 (2013). doi:10.鈥?038/鈥媠rep01460
    25.F. Yang, X. Wang, D. Zhang, J. Yang, D. Luo et al., Chirality-specific growth of single-walled carbon nanotubes on solid alloy catalysts. Nature 510, 522鈥?24 (2014). doi:10.鈥?038/鈥媙ature13434 CrossRef
    26.H.C. Choi, W. Kim, D. Wang, H.J. Dai, Delivery of catalytic metal species onto surfaces with dendrimer carriers for the synthesis of carbon nanotubes with narrow diameter distribution. J. Phys. Chem. B 106(48), 12361鈥?2365 (2002). doi:10.鈥?021/鈥媕p026421f CrossRef
    27.U.D. Ciuparu, Y. Chen, S. Lim, G.L. Haller, L. Pfefferle, Uniform diameter single-walled carbon nanotubes catalytically grown in cobalt-Incorporated MCM-41. J. Phys. Chem. B 180(2), 503鈥?07 (2004). doi:10.鈥?021/鈥媕p036453i CrossRef
    28.S.J. Han, T.Y. Yu, J. Park, B. Koo, J. Joo, T. Hyeon, Diameter-controlled synthesis of discrete and uniform-sized single-walled carbon nanotubes using monodisperse iron oxide nanoparticles embedded in zirconia nanoparticle arrays as catalysts. J. Phys. Chem. B 108(24), 8091鈥?095 (2004). doi:10.鈥?021/鈥媕p037634n CrossRef
    29.L. An, J.M. Owens, L.E. McNeil, J. Liu, Synthesis of nearly uniform single-walled carbon nanotubes using identical metal-containing molecular nanoclusters as catalysts. J. Am. Chem. Soc. 124(46), 13688鈥?3689 (2002). doi:10.鈥?021/鈥媕a0274958 CrossRef
    30.C.G. Lu, J. Liu, Controlling the diameter of carbon nanotubes in chemical vapor deposition method by carbon feeding. J. Phys. Chem. B 110(41), 20254鈥?0257 (2006). doi:10.鈥?021/鈥媕p0632283 CrossRef
    31.L. Durrer, J. Greenwald, T. Helbling, M. Muoth, R. Riek, C. Hierold, Narrowing SWNT diameter distribution using size-separated ferritin-based Fe catalysts. Nanotechnology 20(35), 355601鈥?55607 (2009). doi:10.鈥?088/鈥?957-4484/鈥?0/鈥?5/鈥?55601 CrossRef
    32.S. Huang, Q. Cai, J. Chen, Q. Yong, L. Zhang, Catalyst-free growth of SWNTs on substrate. J. Am. Chem. Soc. 131(6), 2094鈥?095 (2009). doi:10.鈥?021/鈥媕a809635s CrossRef
    33.Y. Chen, J. Zhang, Diameter controlled growth of single-walled carbon nanotubes from SiO2 nanoparticles. Carbon 49(10), 3316鈥?324 (2011). doi:10.鈥?016/鈥媕.鈥媍arbon.鈥?011.鈥?4.鈥?16 CrossRef
    34.Q. Cai, Y. Hu, Y. Liu, S. Huang, Growth of carbon nanotubes from titanium dioxide nanoparticles. Appl. Surf. Sci. 258(20), 8019鈥?025 (2012). doi:10.鈥?016/鈥媕.鈥媋psusc.鈥?012.鈥?4.鈥?61 CrossRef
    35.G. Chen, Y. Seki, H. Kimura, S. Sakurai, M. Yumura, K. Hata, D.N. Futaba, Diameter control of single-walled carbon nanotube forests from 1.3鈥?.0 nm by arc plasma deposition. Sci. Rep. 4, 3804鈥?808 (2014). doi:10.鈥?038/鈥媠rep03804
    36.Q. Liu, W. Ren, Z. Chen, D. Wang, B. Liu, F. Li, H. Cong, H. Chen, B. Yu, Diameter-selective growth of single-walled carbon nanotubes with high quality by floating catalyst method. ACS Nano 2(8), 1722鈥?728 (2008). doi:10.鈥?021/鈥媙n8003394 CrossRef
    37.Y. Li, J. Liu, Y.Q. Wang, Z.L. Wang, Preparation of monodispersed Fe鈥揗o nanoparticles as the catalyst for CVD synthesis of carbon nanotubes. Chem. Mater. 13(3), 1008鈥?014 (2001). doi:10.鈥?021/鈥媍m000787s MathSciNet CrossRef
    38.R. Xiang, T. Wu, E. Einarsson, Y. Suzuki, Y. Murakami, J. Shiomi, S. Maruyama, High-precision selective deposition of catalyst for facile localized growth of single-walled carbon nanotubes. J. Am. Chem. Soc. 131(30), 10344鈥?0345 (2009). doi:10.鈥?021/鈥媕a902904v CrossRef
    39.G. Zhong, J.H. Warner, M. Fouquet, A.W. Robertson, B. Chen, J. Robertson, Growth of ultrahigh density single-walled carbon nanotube forests by improved catalyst design. ACS Nano 6(4), 2893鈥?903 (2012). doi:10.鈥?021/鈥媙n203035x CrossRef
    40.W. Song, C. Jeon, Y.S. Kim, Y.T. Kwon, D.S. Jung et al., Synthesis of bandgap-controlled semiconducting single-walled carbon nanotubes. ACS Nano 4(2), 1012鈥?018 (2010). doi:10.鈥?021/鈥媙n901135b CrossRef
    41.R. Xiang, E. Einarsson, Y. Murakami, J. Shiomi, S. Chiashi, Z. Tang, S. Maruyama, Diameter modulation of vertically aligned single-walled carbon nanotubes. ACS Nano 6(8), 7472鈥?479 (2012). doi:10.鈥?021/鈥媙n302750x CrossRef
    42.Y. Tian, M.Y. Timmermans, S. Kivist枚, A.G. Nasibulin, Z. Zhu, H. Jiang, O.G. Okhotnikov, E.I. Kauppinen, Tailoring the diameter of single-walled carbon nanotubes for optical applications. Nano Res. 4(8), 807鈥?15 (2011). doi:10.鈥?007/鈥媠12274-011-0137-6 CrossRef
    43.S. Huang, X. Cai, J. Liu, Growth of millimeter-long and horizontally aligned SWNT on flat substrates. J. Am. Chem. Soc. 125(19), 5636鈥?637 (2003). doi:10.鈥?021/鈥媕a034475c CrossRef
    44.S. Huang, B. Maynor, J. Liu, Ultralong, well-aligned single-walled carbon nanotube architectures on surfaces. Adv. Mater. 15(19), 1651鈥?654 (2003). doi:10.鈥?002/鈥媋dma.鈥?00305203 CrossRef
    45.S. Huang, M. Woodson, J. Liu, R. Smalley, Growth mechanism of oriented long single-walled carbon nanotubes using 鈥渇ast-heating鈥?chemical vapor deposition process. Nano Lett. 4(6), 1025鈥?028 (2004). doi:10.鈥?021/鈥媙l049691d CrossRef
  • 作者单位:Junjun Chen (1)
    Xiangju Xu (1)
    Lijie Zhang (1)
    Shaoming Huang (1)

    1. Nanomaterials and Chemistry Key Laboratory, Wenzhou University, Wenzhou, 325027, People鈥檚 Republic of China
  • 刊物类别:Nanotechnology and Microengineering; Nanotechnology; Nanoscale Science and Technology;
  • 刊物主题:Nanotechnology and Microengineering; Nanotechnology; Nanoscale Science and Technology;
  • 出版者:Springer Berlin Heidelberg
  • ISSN:2150-5551
文摘
To have uniform nanoparticles individually dispersed on substrate before single-walled carbon nanotubes (SWNTs) growth at high temperature is the key for controlling the diameter of the SWNTs. In this letter, a facile approach to control the diameter and distribution of the SWNTs by improving the dispersion of the uniform Fe/Mo nanoparticles on silicon wafers with silica layer chemically modified by 1,1,1,3,3,3-hexamethyldisilazane under different conditions is reported. It is found that the dispersion of the catalyst nanoparticles on Si wafer surface can be improved greatly from hydrophilic to hydrophobic, and the diameter and distribution of the SWNTs depend strongly on the dispersion of the catalyst on the substrate surface. Well dispersion of the catalyst results in relatively smaller diameter and narrower distribution of the SWNTs due to the decrease of aggregation and enhancement of dispersion of the catalyst nanoparticles before growth. It is also found that the diameter of the superlong aligned SWNTs is smaller with more narrow distribution than that of random nanotubes. Keywords Single-walled carbon nanotube Diameter control Chemical modification Chemical vapor deposition Catalyst nanoparticles

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700