用户名: 密码: 验证码:
Assessment of four DNA fragments (COI, 16S rDNA, ITS2, 12S rDNA) for species identification of the Ixodida (Acari: Ixodida)
详细信息    查看全文
  • 作者:Jizhou Lv (1)
    Shaoqiang Wu (1)
    Yongning Zhang (1)
    Yan Chen (2)
    Chunyan Feng (1)
    Xiangfen Yuan (1)
    Guangle Jia (1)
    Junhua Deng (1)
    Caixia Wang (1)
    Qin Wang (1)
    Lin Mei (1)
    Xiangmei Lin (1)
  • 关键词:DNA Barcode ; COI ; Species identification ; Ticks ; 16S rDNA ; ITS2 ; 12S rDNA ; Nearest neighbour ; BLASTn
  • 刊名:Parasites & Vectors
  • 出版年:2014
  • 出版时间:December 2014
  • 年:2014
  • 卷:7
  • 期:1
  • 全文大小:447 KB
  • 参考文献:1. Apanaskevich DA, Horak IG: The genus Hyalomma Koch, 1844: V. Re-evaluation of the taxonomic rank of taxa comprising the H .( Euhyalomma ) marginatum Koch complex of species (Acari: Ixodidae) with redescription of all parasitic stages and notes on biology. / Int J Acarol 2008,34(1):13-2. CrossRef
    2. Apanaskevich DA, Schuster AL, Horak IG: The genus Hyalomma: VII. Redescription of all parasitic stages of H. (Euhyalomma) dromedarii and H. (E.) schulzei (Acari: Ixodidae). / J Med Entomol 2008,45(5):817-31. CrossRef
    3. Mangold AJ, Bargues MD, Mas-Coma S: Mitochondrial 16S rDNA sequences and phylogenetic relationships of species of Rhipicephalus and other tick genera among Metastriata (Acari: Ixodidae). / Parasitol Res 1998,84(6):478-84. CrossRef
    4. Dantas-Torres F, Latrofa MS, Annoscia G, Giannelli A, Parisi A, Otranto D: Morphological and genetic diversity of Rhipicephalus sanguineus sensu lato from the New and Old Worlds. / Parasit Vectors 2013, 6:213. CrossRef
    5. Liu LM, Liu JN, Liu Z, Yu ZJ, Xu SQ, Yang XH, Li T, Li SS, Guo LD, Liu JZ: Microbial communities and symbionts in the hard tick Haemaphysalis longicornis (Acari: Ixodidae) from north China. / Parasit Vectors 2013, 6:310. CrossRef
    6. Claerebout E, Losson B, Cochez C, Casaert S, Dalemans AC, De Cat A, Madder M, Saegerman C, Heyman P, Lempereur L: Ticks and associated pathogens collected from dogs and cats in Belgium. / Parasit Vectors 2013, 6:183. CrossRef
    7. Caporale DA, Rich SM, Spielman A, Telford SR, Kocher TD: Discriminating between Ixodes ticks by means of mitochondrial DNA sequences. / Mol Phylogenet Evo 1995,4(4):361-65. CrossRef
    8. Guglielmone AA, Venzal JM, González-Acu?a D, Nava S, Hinojosa A, Mangold AJ: The phylogenetic position of Ixodes stilesi Neumann, 1911 (Acari: Ixodidae): morphological and preliminary molecular evidences from 16S rDNA sequences. / Syst Parasitol 2006,65(1):1-1. CrossRef
    9. Hajibabaei M, Janzen DH, Burns JM, Hallwachs W, Hebert PD: DNA barcodes distinguish species of tropical Lepidoptera. / Proc Nati Acad Sci U S A 2006,103(4):968-71. CrossRef
    10. Hebert PD, Penton EH, Burns JM, Janzen DH, Hallwachs W: Ten species in one: DNA barcoding reveals cryptic species in the neotropical skipper butterfly Astraptes fulgerator. / Proc Nati Acad Sci U S A 2004,101(41):14812-4817. CrossRef
    11. Hebert PD, Stoeckle MY, Zemlak TS, Francis CM: Identification of Birds through DNA Barcodes. / PLoS Biol 2004,2(10):e312. CrossRef
    12. Lv J, Wu S, Zhang Y, Zhang T, Feng C, Jia G, Lin X: Development of a DNA barcoding system for the Ixodida (Acari: Ixodida). / Mitochondrial DNA 2013. early online, doi: 10.3109/19401736.2013.792052
    13. Xia Y, Gu HF, Peng R, Chen Q, Zheng YC, Murphy RW, Zeng XM: COI is better than 16S rRNA for DNA barcoding Asiatic salamanders (Amphibia: Caudata: Hynobiidae). / Mol Ecol Resour 2012,12(1):48-6. CrossRef
    14. Chen R, Jiang LY, Qiao GX: The effectiveness of three regions in mitochondrial genome for aphid DNA barcoding: a case in Lachininae. / PloS one 2012,7(10):e46190. CrossRef
    15. Tobe SS, Kitchener AC, Linacre AM: Reconstructing mammalian phylogenies: a detailed comparison of the cytochrome B and cytochrome oxidase subunit I mitochondrial genes. / PloS one 2010,5(11):e14156. CrossRef
    16. Black WC, Piesman J: Phylogeny of hard- and soft-tick taxa (Acari: Ixodida) based on mitochondrial 16S rDNA sequences. / Proc Nati Acad Sci U S A 1994,91(21):10034-0038. CrossRef
    17. Dobson SJ, Barker SC: Phylogeny of the hard ticks (Ixodidae) inferred from 18S rRNA indicates that the genus Aponomma is paraphyletic. / Mol Ecol Resour 1999,11(2):288-95.
    18. Murrell A, Campbell NJ, Barker SC: Mitochondrial 12S rDNA indicates that the Rhipicephalinae (Acari: Ixodida) is paraphyletic. / Mol Phylogenet Evo 1999,12(1):83-6. CrossRef
    19. Norris DE, Klompen JSH, Black WC: Comparison of the mitochondrial 12S and 16S ribosomal DNA genes in resolving phylogenetic relationships among hard ticks (Acari: Ixodidae). / Ann Entomol Soc Am 1999,92(1):117-29.
    20. Murrell A, Campbell NJ, Barker SC: Phylogenetic analyses of the rhipicephaline ticks indicate that the genus Rhipicephalus is paraphyletic. / Mol Phylogenet Evo 2000,16(1):1-. CrossRef
    21. Chitimia L, Lin RQ, Cosoroaba I, Wu XY, Song HQ, Yuan ZG, Zhu XQ: Genetic characterization of ticks from southwestern Romania by sequences of mitochondrial cox1 and nad5 genes. / Exp Appl Acarol 2010,52(3):305-11. CrossRef
    22. Song S, Shao R, Atwell R, Barker S, Vankan D: Phylogenetic and phylogeographic relationships in Ixodes holocyclus and Ixodes cornuatus (Acari: Ixodidae) inferred from COX1 and ITS2 sequences. / Int J Parasitol 2011,41(8):871-80. CrossRef
    23. Murrell A, Campbell NJ, Barker SC: A total-evidence phylogeny of ticks provides insights into the evolution of life cycles and biogeography. / Mol Phylogenet Evo 2001,21(2):244-58. CrossRef
    24. Rees DJ, Dioli M, Kirkendall LR: Molecules and morphology: evidence for cryptic hybridization in African Hyalomma (Acari: Ixodidae). / Mol Phylogenet Evo 2003,27(1):131-42. CrossRef
    25. Folmer O, Black M, Hoeh W, Lutz R, Vrijenhoek R: DNA primers for amplification of mitochondrial cytochrome c oxidase subunit I from diverse metazoan invertebrates. / Mar Biotechnol(NY) 1994,3(5):294-99.
    26. Beati L, Keirans JE: Analysis of the systematic relationships among ticks of the genera Rhipicephalus and Boophilus (Acari: Ixodidae) based on mitochondrial 12S ribosomal DNA gene sequences and morphological characters. / J Parasitol 2001,87(1):32-8.
    27. Tamura K, Peterson D, Peterson N, Stecher G, Nei M, Kumar S: MEGA5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. / Mol Phylogenet Evo 2011,28(10):2731-739.
    28. Thompson JD, Higgins DG, Gibson TJ: CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. / Nucleic Acids Res 1994,22(22):4673-680. CrossRef
    29. Kimura M: A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. / J Mol Evol 1980,16(2):111-20. CrossRef
    30. Chen S, Yao H, Han J, Liu C, Song J, Shi L, Zhu Y, Ma X, Gao T, Pang X, Luo K, Li Y, Li X, Jia X, Lin Y, Leon C: Validation of the ITS2 region as a novel DNA barcode for identifying medicinal plant species. / PloS one 2010,5(1):e8613. CrossRef
    31. Meyer CP, Paulay G: DNA barcoding: error rates based on comprehensive sampling. / PLoS Biol 2005,3(12):e422. CrossRef
    32. Ronquist F, Teslenko M, Van der Mark P, Ayres DL, Darling A, Hohna S, Larget B, Liu L, Suchard MA, Huelsenbeck JP: MrBayes 3.2: efficient Bayesian phylogenetic inference and model choice across a large model space. / Syst Biol 2012,61(3):539-42. CrossRef
    33. Nylander JAA: / MrModeltest v2. Computer program distributed by the author. Sweden: Evolutionary Biology Centre, Uppsala University, Uppsala; 2004.
    34. Camacho C, Coulouris G, Avagyan V, Ma N, Papadopoulos J, Bealer K, Madden TL: BLAST+: architecture and applications. / BMC bioinformatics 2009, 10:421. CrossRef
    35. Ross HA, Murugan S, Li WL: Testing the reliability of genetic methods of species identification via simulation. / Syst Biol 2008,57(2):216-30. CrossRef
    36. Ratnasingham S, Hebert PD: bold: The Barcode of Life Data System. http://www.barcodinglife.org / Mol Ecol Notes 2007,7(3):355-64. CrossRef
    37. Ryberg M, Nilsson RH, Kristiansson E, Topel M, Jacobsson S, Larsson E: Mining metadata from unidentified ITS sequences in GenBank: a case study in Inocybe (Basidiomycota). / BMC Evol Biol 2008, 8:50. CrossRef
  • 作者单位:Jizhou Lv (1)
    Shaoqiang Wu (1)
    Yongning Zhang (1)
    Yan Chen (2)
    Chunyan Feng (1)
    Xiangfen Yuan (1)
    Guangle Jia (1)
    Junhua Deng (1)
    Caixia Wang (1)
    Qin Wang (1)
    Lin Mei (1)
    Xiangmei Lin (1)

    1. Institute of Animal Quarantine, Chinese Academy of Inspection and Quarantine, Beijing, 100029, People’s Republic of China
    2. Institute of Plant Quarantine, Chinese Academy of Inspection and Quarantine, Beijing, 100029, People’s Republic of China
  • ISSN:1756-3305
文摘
Background The 5-region of cytochrome oxidase I (COI) is the standard marker for DNA barcoding. However, COI has proved to be of limited use in identifying some species, and for some taxa, the coding sequence is not efficiently amplified by PCR. These deficiencies lead to uncertainty as to whether COI is the most suitable barcoding fragment for species identification of ticks. Methods In this study, we directly compared the relative effectiveness of COI, 16S ribosomal DNA (rDNA), nuclear ribosomal internal transcribed spacer 2 (ITS2) and 12S rDNA for tick species identification. A total of 307 sequences from 84 specimens representing eight tick species were acquired by PCR. Besides the 1,834 published sequences of 189 tick species from GenBank and the Barcode of Life Database, 430 unpublished sequences representing 59 tick species were also successfully screened by Bayesian analyses. Thereafter, the performance of the four DNA markers to identify tick species was evaluated by identification success rates given by these markers using nearest neighbour (NN), BLASTn, liberal tree-based or liberal tree-based (+threshold) methods. Results Genetic divergence analyses showed that the intra-specific divergence of each marker was much lower than the inter-specific divergence. Our results indicated that the rates of correct sequence identification for all four markers (COI, 16S rDNA, ITS2, 12S rDNA) were very high (> 96%) when using the NN methodology. We also found that COI was not significantly better than the other markers in terms of its rate of correct sequence identification. Overall, BLASTn and NN methods produced higher rates of correct species identification than that produced by the liberal tree-based methods (+threshold or otherwise). Conclusions As the standard DNA barcode, COI should be the first choice for tick species identification, while 16S rDNA, ITS2, and 12S rDNA could be used when COI does not produce reliable results. Besides, NN and BLASTn are efficient methods for species identification of ticks.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700