用户名: 密码: 验证码:
Patterns of SOC and soil 13C and their relations to climatic factors and soil characteristics on the Qinghai–Tibetan Plateau
详细信息    查看全文
  • 作者:Shaoqiang Wang (1) (2)
    Jiangwen Fan (1)
    Minghua Song (1)
    Guirui Yu (1)
    Lei Zhou (1)
    Jiyuan Liu (1)
    Huaping Zhong (1)
    Lupeng Gao (1)
    Zhongmin Hu (1)
    Weixing Wu (1)
    Ting Song (1)
  • 关键词:Soil organic carbon ; Soil δ13C ; Climate factors ; Soil characteristic ; Qinghai ; Tibetan Plateau
  • 刊名:Plant and Soil
  • 出版年:2013
  • 出版时间:2 - February 2013
  • 年:2013
  • 卷:363
  • 期:1
  • 页码:243-255
  • 全文大小:353KB
  • 参考文献:1. Accoe F, Beockx P, Van Cleemput O, Hofman G, Hui X, Bin H, Guanxion C (2002) Characterization of soil organic matter fractions from grassland and cultivated soils via C content and 13δC signature. Rapid Commun Mass Spectrom 16:2157-164 CrossRef
    2. Andreux F, Cerri C, Vose PB, Vitorello VA (1990) Potential of stable isotope, 15N and 13C methods for determining input and turnover in soils. In: Harrison AF (ed) Nutrient cycling in terrestrial ecosystems, field methods, application and interpretation. Elsevier Applied Science, London, pp 259-75
    3. Balesdent J, Mariotti A (1988) Measurement of soil organic matter turnover using 13C natural abundance. In: Boutton TW, Yama-saki S (eds) Mass spectrometry of soil. Marcel Dekker, New York, pp 83-11
    4. Barrios E, Buresh RJ, Sprent JI (1996) Organic matter in soil particle size and density fractions from maize and legume cropping systems. Soil Biol Biochem 28:185-93 CrossRef
    5. Bernoux M, Cerri CC, Neill C, de Moraes JFL (1998) The use of stable carbon isotopes for estimating soil organic matter turnover rates. Geoderma 82:43-8 CrossRef
    6. Bird MI, Lloyd JJ, Santruchkova H, Veenendaal E (2001) Global soil organic carbon. In: Schulze ED et al (eds) Global biogeochemical cycles in the climate system. Academic, New York, pp 185-99 CrossRef
    7. Bird MI, Santruckova H, Lloyd J, Lawson E (2002a) The isotopic composition of soil organic carbon on a north-south transect in western Canada. Eur J Soil Sci 53(3):393-03 CrossRef
    8. Bird MI, Santruckova H, Arneth A, Grigoriev S, Gleixner G, Kalaschnikov YN, Lloyd J, Schulze ED (2002b) Soil carbon inventories and carbon-13 on a latitude transect in Siberia. Tellus B 54(5):631-41 CrossRef
    9. Bird MI, Veenendaal EM, Lloyd JJ (2004) Soil carbon inventories and delta C-13 along a moisture gradient in Botswana. Glob Change Biol 10(3):342-49 CrossRef
    10. Briones MJI, Ostle NJ, Garnett MH (2006) Invertebrates increase the sensitivity of non-labile soil carbon to climate change. Soil Biol Biochem 39:816-1 CrossRef
    11. Buchmann N, Kao WY, Ehleringer J (1997) Influence of stand structure on carbon-13 of vegetation, soils, and canopy air within deciduous and evergreen forests in Utah, United States. Oecologia 110(1):109-19 CrossRef
    12. Compton JE, Boone RD (2000) Long-term impacts of agriculture on soil carbon and nitrogen in New England forests. Ecology 81:2314-330 CrossRef
    13. Connin SL, Feng X, Virginia RA (2001) Isotopic discrimination during long-term decomposition in an arid land ecosystem. Soil Biol Biochem 33:41-1 CrossRef
    14. Crow SE, Lajtha K, Filley TR, Swanston CW, Bowden RD, Caldwell BA (2009) Sources of plant-derived carbon and stability of organic matter in soil: implications for global change. Glob Change Biol 15(8):2003-019 CrossRef
    15. Ehleringer JR, Buchmann N, Flanagan LB (2000) Carbon isotope ratios in belowground carbon cycle processes. Ecol Appl 10(2):412-22 CrossRef
    16. Fan JW, Zhong HP, Harris W, Yu GR, Wang SQ, Hu ZM, Yue YZ (2008) Carbon storage in the grasslands of China based on field measurements of above- and below-ground biomass. Clim Chang 86(3-):375-96 CrossRef
    17. Feng XH (2002) A theoretical analysis of carbon isotope evolution of decomposing plant litters and soil organic matter. Global Biogeochem Cy 16(4):1119. doi:10.1029/2002GB001867 CrossRef
    18. Filley TR, Boutton TW, Liao JD, Jastrow JD, Gamblin DE (2008) Chemical changes to nonaggregated particulate soil organic matter following grassland-to-woodland transition in a subtropical savanna. J Geophys Res 113(G3):G03009 CrossRef
    19. Francey RJ, Farquhar GD (1982) An explanation of 13C/12C variation in tree rings. Nature 297:28-1 CrossRef
    20. Glaser B (2005) Compound-specific stable-isotope (δ13C) analysis in soil science. J Plant Nutr Soil Sci 168:633-48 CrossRef
    21. Helfrich M, Ludwig B, Buurman P, Flessa H (2006) Effect of land use on the composition of soil organic matter in density and aggregate fractions as revealed by solid-state 13C NMR spectroscopy. Geoderma 136:331-41 CrossRef
    22. ISSCAS (1978) Institute of Soil Science, Chinese Academy of Sciences, physical and chemical analysis methods of soils. China Shanghai Science Technology Press, Shanghai, pp 7-9
    23. Kato T, Tang Y, Gu S, Cui X, Hirota M, Du M, Li Y, Zhao X, Oikawa T (2004) Carbon dioxide exchange between the atmosphere and an alpine meadow ecosystem on the Qinghai–Tibetan Plateau, China. Agr Forest Meteorol 124:121-34 CrossRef
    24. Kleber M, Nico PS, Plante A, Filley T, Kramer M, Swanston C, Sollins P (2010) Old and stable soil organic matter is not necessarily chemically recalcitrant: implications for modeling concepts and temperature sensitivity. Glob Change Biol 17:1097-107 CrossRef
    25. Ladd JN, Foster RC, Skjemstad JO (1993) Soil structure—carbon and nitrogen-metabolism. Geoderma 56(1-):401-34 CrossRef
    26. Liao JD et al (2006a) Organic matter turnover in soil physical fractions following woody plant invasion of grassland: evidence from natural 13C and 15N. Soil Biol Biochem 38:3197-210 CrossRef
    27. Liao JD et al (2006b) Storage and dynamics of carbon and nitrogen in soil physical fractions following woody plant invasion of grassland. Soil Biol Biochem 38:3184-196 CrossRef
    28. Llorente M, Glaser B, Turrión MB (2010) Anthropogenic disturbance of natural forest vegetation on calcareous soils alters soil organic matter composition and natural abundance of 13C and 15N in density fractions. Eur J Forest Res 129:1143-153 CrossRef
    29. Llorente M, Turrión MB (2010) Microbiological parameters as indicators of soil organic carbon dynamics in relation to different land use management. Eur J Forest Res 129:73-1 CrossRef
    30. Lu HY, Wu NQ, Gu ZY, Guo ZT, Wang L, Wu HB, Wang G, Zhou LP, Han JM, Liu TS (2004) Distribution of carbon isotope composition of modern soils on the Qinghai-Tibetan Plateau. Biogeochemistry 70(2):273-97 CrossRef
    31. Nadelhoffer KJ, Fry B (1988) Controls on natural nitrogen-15 and carbon-13 abundances in forest soil organic matter. Soil Sci Soc Am J 52:1633-640 CrossRef
    32. Ni J (2000) A simulation of biomes on the Tibetan Plateau and their responses to global climate change. Moun Res Dev 20(1):80-9 CrossRef
    33. Ni J (2002) Carbon storage in grasslands of China. J Arid Environ 50(2):205-18 CrossRef
    34. Peterson CM, Bhatti JS, Flanagan LB, Norris C (2006) Stocks, chemistry, and sensitivity to climate change of dead organic matter along the Canadian boreal forest transect case study. Clim Chang 74:223-51 CrossRef
    35. Rovira P, Vallejo VR (2003) Physical protection and biochemical quality of organic matter in Mediterranean calcareous forest soils: a density fraction approach. Soil Biol Biochem 35:245-61 CrossRef
    36. Sanderman J, Amundson R, Baldocchi DD (2003) Application of eddy covariance measurements to the temperature dependence of soil organic matter mean residence time. Global Biogeochem Cycles 17:1061-07 CrossRef
    37. Schj?nning P, Thomsen IK, Moberg JP, de Jonge H, Kristensen K, Christensen BT (1999) Turnover of organic matter in differently textured soils—I. Physical characteristics of structurally disturbed and intact soils. Geoderma 89(3-):177-98 CrossRef
    38. Sevink J, Obale-Ebanga F, Meijer HAJ (2005) Land-use related organic matter dynamics in North Cameroon soils assessed by 13C analysis of soil organic matter fractions. Eur J Soil Sci 56:103-11 CrossRef
    39. Shi PL, Zhang XZ, Zhong ZM, Ouyang H (2006) Diurnal and seasonal variability of soil CO2 efflux in a cropland ecosystem on the Tibetan Plateau. Agr Forest Meteorol 137(3-):220-33 CrossRef
    40. Silim SN, Guy RD, Patterson TB, Livingston NJ (2001) Plasticity in water use efficiency of Picea sitchensis, P. glauca and their natural hybrids. Oecologia 128:317-25 CrossRef
    41. Sollins P, Kramer M, Swanston C, Lajtha K, Filley T, Aufdenkampe A, Wagai R, Bowden R (2009) Sequential density fractionation across soils of contrasting mineralogy: evidence for both microbial- and mineral-controlled soil organic matter stabilization. Biogeochemistry 96(1-):209-31 CrossRef
    42. Song MH, Duan DY, Chen H, Hu QW, Zhang F, Xu XL, Tian YQ, Ouyang H, Peng CH (2008) Leaf d13C reflects ecosystem patterns and responses of alpine plants to the environments on the Tibetan Plateau. Ecography 31:499-08 CrossRef
    43. Stevenson BA, Kelly EF, McDonald EV, Busacca AJ (2005) The stable carbon isotope composition of soil organic carbon and pedogenic carbonates along a bioclimatic gradient in the Palouse region, Washington State, USA. Geoderma 124:37-7 CrossRef
    44. Su YZ, Zhao HL, Zhang TH (2002) Influencing mechanism of several shrubs and subshrubs on soil fertility in Horqin Sandy Land. Chin J Appl Ecol 13(7):802-06 (In Chinese)
    45. Swanston CW, Caldwell BA, Homann PS, Ganio L, Sollins P (2002) Carbon dynamics during a long-term incubation of separate and recombined density fractions from seven forest soils. Soil Biol Biochem 34:1121-130 CrossRef
    46. Thomsen IK, Schjonning P, Jensen B, Kristensen K, Christensen BT (1999) Turnover of organic matter in differently textured soils—II. Microbial activity as influenced by soil water regimes. Geoderma 89(3-):199-18 CrossRef
    47. Wang G, Cheng G, Shen Y (2001) Research on ecological environmental changes in the source Regions of Yangtze–Yellow Rivers and their integrated protection. Lanzhou University Press, Lanzhou
    48. Wang L, Lv H, Wu N, Wu H, Liu D (2003) Altitudinal trends of stable carbon isotope composition for Poeceae in Qinghai-Xizang plateau. Quaternary Sciences 23(5):273-80 (In Chinese)
    49. Wang L, Lu HY, Wu NQ, Chu D, Han JS, Wu YH, Wu HB, Gu ZY (2004) C4 plants in high elevation Qinghai Tibetan Plateau. Science Bulletin 49(13):1290-293 (In Chinese)
    50. Warren CR, McGrath JF, Adams MA (2001) Water availability and carbon isotope discrimination in conifers. Oecologia 127:476-86 CrossRef
    51. Wedin DA, Tieszen LL, Dewey B, Pastor J (1995) Carbon-isotope dynamics during grass decomposition and soil organic-matter formation. Ecology 76(5):1383-392 CrossRef
    52. Wick AF, Ingram LJ, Stahl PD (2009) Aggregate and organic matter dynamics in reclaimed soils as indicated by stable carbon isotopes. Soil Biol Biochem 41:201-09 CrossRef
    53. Wu S, Yin Y, Zheng D, Yang Q (2005) Climate changes in the Tibetan Plateau during the last three decades. Acta Geogr Sinica 60(1):3-1
    54. Wynn JG, Bird MI, Vellen L, Grand-Clement E, Carter J, Berry SL (2006) Continental-scale measurement of the soil organic carbon pool with climatic, edaphic, and biotic controls. Global Biogeochem Cy 20, GB1007. doi:10.1029/2005GB002576 .
    55. Yang YH, Fang JY, Tang YH, Ji CJ, Zheng CY, He JS, Zhu B (2008) Storage, patterns and controls of soil organic carbon in the Tibetan grasslands. Glob Change Biol 14:1592-599 CrossRef
    56. Yang YH, Fang JY, Guo DL, Ji CJ, Ma WH (2010) Vertical patterns of soil carbon, nitrogen and carbon: nitrogen stoichiometry in Tibetan grasslands. Biogeosciences Discussions 7:1-4 CrossRef
    57. Yu GR, He HL, Liu XA (2004) Atlas for spatialized information of terrestrial ecosystem in China-volume of climatological elements. China Meteorological Press, Beijing (In Chinese)
    58. Zhang YQ, Tang YH, Jiang J, Yang YH (2007) Characterizing the dynamics of soil organic carbon in grasslands on the Qinghai-Tibetan Plateau. Science in China Series D: Earth Sciences 50(1):113-20 CrossRef
    59. Zheng D (1996) The system of physico-geographical regions of the Qinghai-Xizang Plateau. Science in China (Series D) 26(4):336-41
    60. Zhou YC, Fan JW, Zhang WY, Harris W, Zhong HP, Hu ZM, Song LL (2011) Factors influencing altitudinal patterns of C3 plant foliar carbon isotope composition of grasslands on the Qinghai-Tibet Plateau, China. Alp Botany doi:10.1007/s00035-011-0093-5
    61. Zou XY, Li S, Zhang CL, Dong GR, Dong YX, Yan P (2002) Desertification and control plan in the Tibet Autonomous Region of China. J Arid Environ 51(2):183-98 CrossRef
  • 作者单位:Shaoqiang Wang (1) (2)
    Jiangwen Fan (1)
    Minghua Song (1)
    Guirui Yu (1)
    Lei Zhou (1)
    Jiyuan Liu (1)
    Huaping Zhong (1)
    Lupeng Gao (1)
    Zhongmin Hu (1)
    Weixing Wu (1)
    Ting Song (1)

    1. Key Lab of Ecosystem Network Observation and Modeling, Institute of Geographic Sciences and Natural Resources Research, Beijing, 100101, People’s Republic of China
    2. Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences 11A, Datun Road, Chaoyang District, Beijing, 100101, China
  • ISSN:1573-5036
文摘
Background and aims SOC inventory and soil δ13C were widely used to access the size of soil C pool and to indicate the dynamics of C input and output. The effects of climatic factors and soil physical characteristics and plant litter input on SOC inventory and soil δ13C were analyzed to better understand the dynamics of carbon cycling across ecosystems on the Qinghai-Tibetan Plateau. Methods Field investigation was carried out along the two transects with a total of 1,875?km in length and 200?km in width. Sixty-two soil profiles, distributed in forest, meadow, steppe, and cropland, were stratified sampled every 10?cm from 0 to 40?cm. Results Our result showed that SOC density in forest and meadows were much higher than in steppe and highland barley. In contrast, δ13C in forest and meadow were lower than in steppe and highland barley. Soil δ13C tended to enrich with increasing soil depth but SOC decline. SOC and δ13C (0-0?cm) were correlated with different climatic factors in different ecosystems, such that SOC correlated negatively with MAT in meadow and positively with MAP in steppe; δ13C correlated positively with MAT in meadow and steppe; and δ13C also tended to increase with increasing MAT in forest. Of the variation of SOC, 55.15?% was explained by MAP, pH and silt content and 4.63?% was explained by the interaction between MAT and pH across all the ecosystems except for the cropland. Meanwhile, SOC density explained 27.40?% of variation of soil δ13C. Conclusions It is suggested that different climatic factors controlled the size of the soil C pool in different ecosystems on the Tibetan Plateau. SOC density is a key contributor to the variation of soil δ13C.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700