用户名: 密码: 验证码:
Realizing over 10% efficiency in polymer solar cell by device optimization
详细信息    查看全文
  • 作者:Shaoqing Zhang (1) (2)
    Long Ye (1)
    Wenchao Zhao (1)
    Bei Yang (1)
    Qi Wang (1) (2)
    Jianhui Hou (1) (2)

    1. State Key Laboratory of Polymer Physics and Chemistry
    ; Beijing National Laboratory for Molecular Sciences ; Institute of Chemistry ; Chinese Academy of Sciences ; Beijing ; 100190 ; China
    2. School of Chemistry and Biology Engineering
    ; University of Science and Technology Beijing ; Beijing ; 100083 ; China
  • 关键词:polymer solar cells ; photovoltaic polymer ; device optimization ; solvent additives
  • 刊名:SCIENCE CHINA Chemistry
  • 出版年:2015
  • 出版时间:February 2015
  • 年:2015
  • 卷:58
  • 期:2
  • 页码:248-256
  • 全文大小:1,594 KB
  • 参考文献:1. Chen JW, Cao Y. Development of novel conjugated donor polymers for high-efficiency bulk-heterojunction photovoltaic devices. / Acc Chem Res, 2009, 42: 1709鈥?718 CrossRef
    2. Li YF. Molecular design of photovoltaic materials for polymer solar cells: toward suitable electronic energy levels and broad absorption. / Acc Chem Res, 2012, 45: 723鈥?33 CrossRef
    3. Duan CH, Huang F, Cao Y. Recent development of push-pull conjugated polymers for bulk-heterojunction photovoltaics: rational design and fine tailoring of molecular structures. / J Mater Chem, 2012, 22: 10416鈥?0434 CrossRef
    4. Li ZG, Zhao XY, Li X, Gao ZQ, Mi BX, Huang W. Organic thin-film solar cells: devices and materials. / Sci China Chem, 2012, 55: 553鈥?78 CrossRef
    5. Chen CC, Chang WH, Yoshimura K, Ohya K, You J, Gao J, Hong Z, Yang Y. An efficient triple-junction polymer solar cell having a power conversion efficiency exceeding 11%. / Adv Mater, 2014, 26: 5670鈥?677 CrossRef
    6. He ZC, Wu HB, Cao Y. Recent advances in polymer solar cells: realization of high device performance by incorporating water/alcohol-soluble conjugated polymers as electrode buffer layer. / Adv Mater, 2014, 26: 1006鈥?024 CrossRef
    7. Li WW, Furlan A, Hendriks KH, Wienk MM, Janssen RAJ. Efficient tandem and triplejunction polymer solar cells. / J Am Chem Soc, 2013, 135: 5529鈥?532 CrossRef
    8. Yang TB, Wang M, Duan CH, Hu XW, Huang L, Peng JB, Huang F, Gong X. Inverted polymer solar cells with 8.4% efficiency by conjugated polyelectrolyte. / Energy Environ Sci, 2012, 5: 8208鈥?214 CrossRef
    9. Ye L, Zhang SQ, Huo LJ, Zhang MJ, Hou JH. Molecular Design toward highly efficient photovoltaic polymers based on two-dimensional conjugated benzodithiophene. / Acc Chem Res, 2014, 47: 1595鈥?603 CrossRef
    10. Huo LJ, Hou JH. Benzo[1,2-b:4,5-b鈥瞉dithiophene-based conjugated polymers: band gap and energy level control and their application in polymer solar cells. / Polym Chem, 2011, 2: 2453鈥?461 CrossRef
    11. Wang M, Hu XW, Liu P, Li W, Gong X, Huang F, Cao Y. Donor acceptor conjugated polymer based on naphtho[1,2-c:5,6-c]bis[1,2,5] thiadiazole for high-performance polymer solar cells. / J Am Chem Soc, 2011, 133: 9638鈥?641 CrossRef
    12. Wang Y, Liu Y, Chen S, Peng R, Ge ZY. Significant enhancement of polymer solar cell performance via side-chain engineering and simple solvent treatment. / Chem Mater, 2013, 25: 3196鈥?204 CrossRef
    13. Warnan J, El Labban A, Cabanetos C, Hoke ET, Shukla PK, Risko C, Br茅das J-L, McGehee MD, Beaujuge PM. Ring substituents mediate the morphology of PBDTTPD-PCBM bulk-heterojunction solar cells. / Chem Mater 2014, 26: 2299鈥?306 CrossRef
    14. Deng Y, Liu J, Wang J, Liu L, Li W, Tian H, Zhang X, Xie ZY, Geng YH, Wang FS. Dithienocarbazole and isoindigo based amorphous low bandgap conjugated polymers for efficient polymer solar cells. / Adv Mater, 2014, 26: 471鈥?76 CrossRef
    15. Chen HY, Hou JH, Zhang SQ, Liang YY, Yang GW, Yang Y, Yu LP, Wu Y, Li G. Polymer solar cells with enhanced open-circuit voltage and efficiency. / Nature Photonics, 2009, 3: 649鈥?53 CrossRef
    16. Hou JH, Chen HY, Zhang SQ, Chen RI, Yang Y, Wu Y, Li G. Synthesis of a low band gap polymer and its application in highly efficient polymer solar cells. / J Am Chem Soc, 2009, 131: 15586鈥?5587 CrossRef
    17. Liang YY, Xu Z, Xia JB, Tsai ST, Wu Y, Li G, Ray C, Yu LP. For the bright future-bulk heterojunction polymer solar cells with power conversion efficiency of 7.4%. / Adv Mater, 2010, 22: E135鈥揈138 CrossRef
    18. Huo LJ, Zhang SQ, Guo X, Xu F, Li YF, Hou JH. Replacing alkoxy groups with alkylthienyl groups: a feasible approach to improve the properties of photovoltaic polymers. / Angew Chem Int Ed, 2011, 50: 9697鈥?702 CrossRef
    19. Guo X, Zhang MJ, Ma W, Ye L, Zhang SQ, Liu SJ, Ade H, Huang F, Hou JH. Enhanced photovoltaic performance by modulating surface composition in bulk heterojunction polymer solar cells based on PBDTTT-C-T/PC71BM. / Adv Mater, 2014, 26: 4043鈥?049 CrossRef
    20. Huang Y, Guo X, Liu F, Huo LJ, Chen YN, Russell TP, Han CC, Li YF, Hou JH. Improving the ordering and photovoltaic properties by extending pi-conjugated area of electron-donating units in polymers with D-A structure. / Adv Mater, 2012, 24: 3383鈥?389 CrossRef
    21. Zhang MJ, Guo X, Zhang SQ, Hou JH. Synergistic effect of fluorination on molecular energy level modulation in highly efficient photovoltaic polymers. / Adv Mater, 2014, 26: 1118鈥?123 CrossRef
    22. Kim JH, Song CE, Kim B, Kang IN, Shin WS, Hwang DH. Thieno[3,2-b] thiophene-substituted benzo[1,2-b:4,5-b鈥瞉dithiophene as a promising building block for low bandgap semiconducting polymers for highperformance single and tandem organic photovoltaic cells. / Chem Mater, 2013, 26: 1234鈥?242 CrossRef
    23. Cui CH, Wong WY, Li YF. Improvement of open-circuit voltage and photovoltaic properties of 2D-conjugated polymers by alkylthio substitution. / Energy Environ Sci, 2014, 7: 2276鈥?284 CrossRef
    24. Liu P, Zhang K, Liu F, Jin Y, Liu SJ, Russell TP, Yip HL, Huang F, Cao Y. Effect of fluorine content in thienothiophene-benzodithiophene copolymers on the morphology and performance of polymer solar cells. / Chem Mater, 2014, 26: 3009鈥?017 CrossRef
    25. Zhang SQ, Ye L, Zhao WC, Liu D, Yao HF, Hou JH. Side chain selection for designing highly efficient photovoltaic polymers with 2D-conjugated structure. / Macromolecules, 2014, 47: 4653鈥?659 CrossRef
    26. Ye L, Zhang SQ, Zhao WC, Yao H, Hou JH. Highly efficient 2D-conjugated benzodithiophene-based photovoltaic polymer with linear alkylthio side chain. / Chem Mater, 2014, 26: 3603鈥?605 CrossRef
    27. He ZC, Zhong CM, Su SJ, Xu M, Wu HB, Cao Y. Enhanced power-conversion efficiency in polymer solar cells using an inverted device structure. / Nat Photonics, 2012, 6: 591鈥?95
    28. Liao SH, Jhuo HJ, Cheng YS, Chen SA. Fullerene derivative-doped zinc oxide nanofilm as the cathode of inverted polymer solar cells with low-bandgap polymer (PTB7-Th) for high performance. / Adv Mater, 2013, 25: 4766鈥?771 CrossRef
    29. Liu SJ, Zhang K, Lu J, Zhang J, Yip HL, Huang F, Cao Y. High-efficiency polymer solar cells via the incorporation of an amino-functionalized conjugated metallopolymer as a cathode interlayer. / J Am Chem Soc, 2013, 135: 15326鈥?5329 CrossRef
    30. Li CZ, Chang CY, Zang Y, Ju HX, Chueh CC, Liang PW, Cho N, Ginger DS, Jen AKY. Suppressed charge eecombination in inverted organic photovoltaics via enhanced charge extraction by using a conductive fullerene electron transport layer. / Adv Mater, 2014, DOI: 10.1002/adma.201402276
    31. Tan ZA, Li L, Wang FZ, Xu Q, Li SS, Sun G, Tu X, Hou X, Hou JH, Li YF. Solution-processed rhenium oxide: a versatile anode buffer layer for high performance polymer solar cells with enhanced light harvest. / Adv Energy Mater, 2014, 4: 1300884
    32. Tan ZA, Zhang WQ, Zhang ZG, Qian DP, Huang Y, Hou JH, Li YF. High-performance inverted polymer solar cells with solution-processed titanium chelate as electron-collecting layer on ITO electrode. / Adv Mater, 2012, 24: 1476鈥?481 CrossRef
    33. Li XH, Choy WCH, Huo LJ, Xie FX, Sha WEI, Ding BF, Guo X, Li YF, Hou JH, You JB, Yang Y. Dual plasmonic nanostructures for high performance inverted organic solar cells. / Adv Mater, 2012, 24: 3046鈥?052 CrossRef
    34. Ye L, Jing Y, Guo X, Sun H, Zhang S, Zhang MJ, Huo LJ, Hou JH. Remove the residual additives toward enhanced efficiency with higher reproducibility in polymer solar cells. / J Phys Chem C, 2013, 117: 14920鈥?4928 CrossRef
    35. Liu F, Gu Y, Shen X, Ferdous S, Wang HW, Russell TP. Characterization of the morphology of solution-processed bulk heterojunction organic photovoltaics. / Prog Polym Sci, 2013, 38: 1990鈥?052 CrossRef
    36. Peet J, Kim JY, Coates NE, Ma WL, Moses D, Heeger AJ, Bazan GC. Efficiency enhancement in low-bandgap polymer solar cells by processing with alkane dithiols. / Nat Mater, 2007, 6: 497鈥?00 CrossRef
    37. Lee JK, Ma WL, Brabec CJ, Yuen J, Moon JS, Kim JY, Lee K, Bazan GC, Heeger AJ. Processing additives for improved efficiency from bulk heterojunction solar cells. / J Am Chem Soc, 2008, 130: 3619鈥?623 CrossRef
    38. Ye L, Zhang SQ, Ma W, Fan BH, Guo X, Huang Y, Ade H, Hou JH. From binary to ternary solvent: morphology fine-tuning of D/A blends in PDPP3T-based polymer solar cells. / Adv Mater, 2012, 24: 6335鈥?341 CrossRef
    39. Guo X, Cui CH, Zhang MJ, Huo LJ, Huang Y, Hou JH, Li YF. High efficiency polymer solar cells based on poly(3-hexylthiophene)/indene-C-70 bisadduct with solvent additive. / Energy Environ Sci, 2012, 5: 7943鈥?949 CrossRef
  • 刊物类别:Chemistry and Materials Science
  • 刊物主题:Chemistry
    Chinese Library of Science
    Chemistry
  • 出版者:Science China Press, co-published with Springer
  • ISSN:1869-1870
文摘
The low band gap polymer based on benzodithiophene (BDT)-thieno[3,4-b]thiophene (TT) backbone, PBDT-TS1, was synthesized following our previous work and the bulk heterojunction (BHJ) material comprising PBDT-TS1/PC71BM was optimized and characterized. By processing the active layer with different additives i.e. 1,8-diiodooctane (DIO), 1-chloronaphthalene (CN) and 1, 8-octanedithiol (ODT) and optimizing the ratio of each additive in the host solvent, a high PCE of 9.98% was obtained under the condition of utilizing 3% DIO as processing additive in CB. The effect of varied additives on photovoltaic performance was illustrated with atomic force microscopy (AFM) and transmission electron microscope (TEM) measurements that explained changes in photovoltaic parameters. These results provide valuable information of solvent additive choice in device optimization of PBDTTT polymers, and the systematic device optimization could be applied in other efficient photovoltaic polymers. Apparently, this work presents a great advance in single junction PSCs, especially in PSCs with conventional architecture.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700