用户名: 密码: 验证码:
Solid phase extraction of bisphenol A using magnetic core-shell (Fe3O4@SiO2) nanoparticles coated with an ionic liquid, and its quantitation by HPLC
详细信息    查看全文
  • 作者:Songqing Chen ; Jieping Chen ; Xiashi Zhu
  • 关键词:Microextraction ; Extraction kinetics ; Magnetic nanomaterial ; Magnetometry ; FTIR ; Fluorescnece ; Quantum yield
  • 刊名:Microchimica Acta
  • 出版年:2016
  • 出版时间:April 2016
  • 年:2016
  • 卷:183
  • 期:4
  • 页码:1315-1321
  • 全文大小:426 KB
  • 参考文献:1.Li G, Lu YT, Lu C, Zhu MS, Zhai CY, Du YK, Yang P (2015) Efficient catalytic ozonation of bisphenol-A over reduced grapheme oxide modified sea urchin-like α-MnO2 architectures. J Hazard Mater 294:201CrossRef
    2.Abhishek P, Raju PS, Kaustubha M (2013) Selective separation of bisphenol A from aqueous solution using supported ionic liquid membrane. Sep Purif Technol 107:70CrossRef
    3.Parka HS, Koduru JR, Choo KH, Lee B (2015) Activated carbons impregnated with iron oxide nanoparticles for enhanced removal of bisphenol A and natural organic matter. J Hazard Mater 286:315CrossRef
    4.Najafi M, Khalilzadeh MA, Karimi-Maleh H (2014) A new strategy for determination of bisphenol A in the presence of Sudan I using a ZnO/CNTs/ionic liquid paste electrode in food samples. Food Chem 158:125CrossRef
    5.Zhou QX, Gao YY, Xie GH (2011) Determination of bisphenol A, 4-n-nonylphenol, and 4-tert-octylphenol by temperature-controlled ionic liquid dispersive liquid-phase microextraction combined with high performance liquid chromatography-fluorescence detector. Talanta 85:1598CrossRef
    6.Santhi VA, Hairin T, Mustafa AM (2012) Simultaneous determination of organochlorine pesticides and bisphenol A in edible marine biota by GC–MS. Chemosphere 86:1066CrossRef
    7.Mei SR, Wu D, Jiang M, Lu B, Lim JM, Zhou YK, Lee YI (2011) Determination of trace bisphenol A in complex samples using selective molecularly imprinted solid-phase extraction coupled with capillary electrophoresis. Microchem J 98:150CrossRef
    8.Xu JY, Li Y, Bie JX, Jiang W, Guo JJ, Luo YL, Shen F, Sun CY (2015) Colorimetric method for determination of bisphenol A based on aptamer-mediated aggregation of positively charged gold nanoparticles. Microchim Acta 182:2131CrossRef
    9.Sadeghi S, Azhdari H, Arabib H, Moghaddam AZ (2012) Surface modified magnetic Fe3O4 nanoparticles as a selective sorbent for solid phase extraction of uranyl ions from water samples. J Hazard Mater 215–216:208CrossRef
    10.Ding MJ, Wu XL, Yuan LH, Wang S, Li Y, Wang RY, Wen TT, Du SH, Zhou XM (2011) Synthesis of core–shell magnetic molecularly imprinted polymers and detection of sildenafil and vardenafil in herbal dietary supplements. J Hazard Mater 191:177CrossRef
    11.Geng YY, Ding MY, Chen H, Li HF, Lin JM (2012) Preparation of hydrophilic carbon-functionalized magnetic microspheres coated with chitosan and application in solid-phase extraction of bisphenol A in aqueous samples. Talanta 89:189CrossRef
    12.Li SZ, Gong YB, Yang YC, He C, Hu LL, Zhu LF, Sun LP, Shu D (2015) Recyclable CNTs/Fe3O4 magnetic nanocomposites as adsorbents to remove bisphenol A from water and their regeneration. Chem Eng J 260:231CrossRef
    13.Gong AQ, Ping WH, Wang J, Zhu XS (2014) Cyclodextrin polymer/Fe3O4 nanocomposites as solid phase extraction material coupled with UV–vis spectrometry for the analysis of ruti. Spectrochim Acta A 122:331CrossRef
    14.Yang J, Si L, Cui SH, Bi WT (2015) Synthesis of a graphitic carbon nitride nanocomposite with magnetite as a sorbent for solid phase extraction of phenolic acids. Microchim Acta 182(3):737CrossRef
    15.Deng N, Li M, Zhao LJ, Lu CF, Rooy SL, Warner IM (2011) Highly efficient extraction of phenolic compounds by use of magnetic room temperature ionic liquids for environmental remediation. J Hazard Mater 192:1350CrossRef
    16.Berton P, Regmi BP, Spivak DA, Warner IM (2014) Ionic liquid-based dispersive microextraction of nitrotoluenes in water samples. Microchim Acta 181(11):1191CrossRef
    17.Wang R, Yuan Y, Yang X, Han Y, Yan H (2015) Polymethacrylate microparticles covalently functionalized with an ionic liquid for solid-phase extraction of fluoroquinolone antibiotics. Microchim Acta 182(13):2201CrossRef
    18.Ramandi NF, Shemirani F, Farahani MD (2014) Dispersive solid phase extraction of lead (II) using a silica nanoparticle-based ionic liquid ferrofluid. Microchim Acta 181(15):1833CrossRef
    19.Abolghasemi MM, Yousefi V, Piryaei M (2015) Double-charged ionic liquid-functionalized layered double hydroxide nanomaterial as a new fiber coating for solid-phase microextraction of phenols. Microchim Acta 182(13):2155CrossRef
    20.Zheng XY, He LJ, Duan YJ, Jiang XM, Xiang GQ, Zhao WJ, Zhang SS (2014) Poly(ionic liquid) immobilized magnetic nanoparticles as new adsorbent for extraction and enrichment of organophosphorus pesticides from tea drinks. J Chromatogr A 1358:39CrossRef
    21.He H, Yuan DH, Gao ZQ, Xiao DL, He H, Dai H, Peng J, Li N (2014) Mixed hemimicelles solid-phase extraction based on ionic liquid-coated Fe3O4/SiO2 nanoparticles for the determination of flavonoids in bio-matrix samples coupled with high performance liquid chromatography. J Chromatogr A 1324:78CrossRef
    22.Chen JP, Zhu XS (2015) Ionic liquid coated magnetic core/shell Fe3O4@SiO2 nanoparticles for the separation/analysis of linuron in food samples. Spectrochim Acta A 137:456CrossRef
    23.Ballesteros-Gomez A, Brandsma SH, de Boer J, Leonards PEG (2014) Analysis of two alternative organophosphorus flame retardants in electronic and plastic consumer products: resorcinol bis-(diphenylphosphate) (PBDPP) and bisphenol A bis (diphenylphosphate) (BPA-BDPP). Chemosphere 116:10CrossRef
    24.Zhu XS, Gong AQ, Yu SH (2008) Fluorescence probe enhanced spectrofluorimetric method for the determination of gatifloxacin in pharmaceutical formulations and biological fluids. Spectrochim Acta A 69:478CrossRef
    25.Russo V, Tesser R, Trifuoggi M, Giugni M, Di Serio M (2015) A dynamic intraparticle model for fluid–solid adsorption kinetics. Comput Chem Eng 74:66CrossRef
    26.Gonzalez-Centeno MR, Comas-Serra F, Femenia A, Rossello C, Simal S (2015) Effect of power ultrasound application on aqueous extraction of phenolic compounds and antioxidant capacity from grape pomace (vitis vinifera L.): experimental kinetics and modeling. Ultrason Sonochem 22:506CrossRef
    27.Liu GF, Ma J, Li XC, Qin QD (2009) Adsorption of bisphenol A from aqueous solution onto activated carbons with different modification treatments. J Hazard Mater 164:1275CrossRef
    28.Wang HL, Duan AL, Dahlgren RA, Li YY, Li CL, Wang WW, Zeng AB, Wang XD (2014) The joint effects of room temperature ionic liquids and ordered media on fluorescence characteristics of estrogens in water and methanol. Spectrochim Acta A 128:497CrossRef
    29.Zhang XF, Zhang YK, Liu LM (2014) Fluorescence lifetimes and quantum yields of ten rhodamine derivatives: structural effect on emission mechanism in different solvents. J Lumin 145:448CrossRef
    30.Lawton JS, Budil DE (2010) Electron spin resonance investigation of the effects of methanol on microscopic viscosity, ordering, and polarity in different phases of ionomer membranes with sulfonated polyarylene backbones. J Membr Sci 357:47CrossRef
  • 作者单位:Songqing Chen (1)
    Jieping Chen (1)
    Xiashi Zhu (1)

    1. College of Chemistry & Chemical Engineering, Yangzhou University, Yangzhou, 225002, People’s Republic of China
  • 刊物类别:Chemistry and Materials Science
  • 刊物主题:Chemistry
    Analytical Chemistry
    Inorganic Chemistry
    Physical Chemistry
    Characterization and Evaluation Materials
    Monitoring, Environmental Analysis and Environmental Ecotoxicology
  • 出版者:Springer Wien
  • ISSN:1436-5073
文摘
Core-shell nanoparticles (NPs) of the type Fe3O4@SiO2 were prepared, coated with 3 different ionic liquids, and tested for their capability of extracting bisphenol A (BPA). The results showed BPA is best extracted by NPs of the type Fe3O4@SiO2@[OMIM] (where OMIM stands for 1-octyl-3-methylimidazole hexafluorophosphate). Following desorption with methanol, BPA was quantified by HPLC with fluorescence detection in the UV. The following figures of merit were found under optimal conditions: A linear range from 0.5 to 2.0 × 104 μg·L‾1, a detection limit of 90 ng·L‾1, a relative standard deviation of 1.2 % (for n = 3 and 10 μg·L‾1), and a pre-concentration factor of 25. The NPs can be re-used up to 10 times. The method was successfully applied to the determination of BPA in plastic tableware.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700