用户名: 密码: 验证码:
Distribution of Metabolically Active Prokaryotes (Archaea and Bacteria) throughout the Profiles of Chernozem and Brown Semidesert Soil
详细信息    查看全文
  • 作者:M. V. Semenov ; N. A. Manucharova ; A. L. Stepanov
  • 关键词:method of fluorescent in situ hybridization (FISH) ; 16S rRNA ; soil microbial community ; bacteria ; archaea ; Calcisols
  • 刊名:Eurasian Soil Science
  • 出版年:2016
  • 出版时间:February 2016
  • 年:2016
  • 卷:49
  • 期:2
  • 页码:217-225
  • 全文大小:757 KB
  • 参考文献:1.Unified State Register of Soil Resources of Russia, Version 1.0 (Dokuchaev Soil Sciences Institute, Moscow, 2014) [in Russian].
    2.N. A. Manucharova, Identification of Metabolically Active Prokaryotic Cells in Soils Using in Situ Molecular-Biological Fluorescence Hybridization (FISH) (Universitet i Shkola, Moscow, 2008) [in Russian].
    3.N. A. Manucharova, A. N. Vlasenko, D. G. Zvyagintsev, and E. V. Men’ko, “Specificity of the chitinolytic microbial complex of soils incubated at different temperatures,” Microbiology (Moscow) 80 (2), 205–215 (2011).CrossRef
    4.L. M. Polyanskaya, Gorbacheva M.A., Milanovskii E.Y., and D. G. Zvyagintsev, “Development of microorganisms in the chernozem under aerobic and anaerobic conditions,” Eurasian Soil Sci. 43 (3), 328–332 (2010).CrossRef
    5.L. M. Polyanskaya and D. G. Zvyagintsev, “The content and composition of microbial biomass as an index of the ecological status of soil,” Eurasian Soil Sci. 38 (6), 625–633 (2005).
    6.N. Kh. Sergaliev, M. G. Kakishev, A.T. Zhiengaliev, M. A. Volodin, E. E. Andronov, and A. G. Pinaev, “Application of a new purification method of West-Kazakhstan chestnut soil microbiota DNA for metagenomic analysis,” Eurasian Soil Sci. 48 (4), 425–431 (2015). doi: doi 10.7868/S0032180X15040103CrossRef
    7.N. B. Khitrov and S. V. Loiko, “Soil cover patterns on flat interfluves in the Kamennaya Steppe,” Eurasian Soil Sci. 43 (12), 1309–1321 (2010).CrossRef
    8.A. M. Yaroslavtsev, N. A. Manucharova, A. L. Stepanov, D. G. Zvyagintsev, and I. I. Sudnitsyn, “Microbial destruction of chitin in soils under different moisture conditions,” Eurasian Soil Sci. 42 (7), 797–806 (2009).CrossRef
    9.R. Amann, W. Ludwig, and K. H. Schleifer, “Phylogenetic identification and in situ detection of individual microbial cells without cultivation,” Microbiol. Rev. 59, 143–169 (1995).
    10.R. I. Amann and W. Ludwig, “Ribosomal RNA targeted nucleic acid probes for studies in microbial ecology,” FEMS Microbiol. Rev. 24, 555–565 (2000).CrossRef
    11.L. R. Bakken and Å. Frostegård, “Nucleic acid extraction from soil,” in Nucleic Acids and Proteins in Soil, Ed. by P. Nannipieri and K. Smalla (Springer-Verlag, Berlin, 2006), Vol. 8, pp. 49–73.CrossRef
    12.E. Blume, M. Bischoff, J. Reichert, T. Moorman, A. Konopka, and R. Turco, “Surface and subsurface microbial biomass, community structure and metabolic activity as a function of soil depth and season,” Appl. Soil Ecol. 20 (3), 171–181 (2002).CrossRef
    13.P. Cao, L. M. Zhang, J. P. Shen, Y. M. Zheng, H. J. Di, and J. Z. He, “Distribution and diversity of archaeal communities in selected Chinese soils,” FEMS Microbiol. Ecol. 80, 146–158 (2012).CrossRef
    14.H. Daims, A. Brühl, R. Amann, K.-H. Schleifer, and M. Wagner, “The domain-specific probe EUB338 is insufficient for the detection of all bacteria: development and evaluation of a more comprehensive probe set,” Syst. Appl. Microbiol. 22, 434–444 (1999).CrossRef
    15.T. Eickhorst and R. Tippkotter, “Improved detection of soil microorganisms using fluorescence in situ hybridization (FISH) and catalyzed reporter deposition (CARD-FISH),” Soil Biol. Biochem. 40, 1883–1891 (2008).CrossRef
    16.K. G. Eilers, C. L. Lauber, R. Knight, and N. Fierer, “Shifts in bacterial community structure associated with inputs of low molecular weight carbon compounds to soil,” Soil Biol. Biochem. 42, 896–903 (2010).CrossRef
    17.C. M. Hansel, S. Fendorf, P. M. Jardine, and C. A. Francis, “Changes in bacterial and archaeal community structure and functional diversity along a geochemically variable soil profile,” Appl. Environ. Microbiol. 74, 1620–1633 (2008).CrossRef
    18.M. Hartmann, S. Lee, S. J. Hallam, and W. W. Mohn, “Bacterial, archaeal and eukaryal community structures throughout soil horizons of harvested and naturally disturbed forest stands,” Environ. Microbiol. 11, 3045–3062 (2009).CrossRef
    19.J.-Z. He, H.-W. Hu, and L.-M. Zhang, “Current insights into the autotrophic thaumarchaeal ammonia oxidation in acidic soils,” Soil Biol. Biochem. 55, 146–154 (2012).CrossRef
    20.J.-Z. He, J.-P. Shen, L.-M. Zhang, Y.-G. Zhu, Y.-M. Zheng, M.-G. Xu, and H. Di, “Quantitative analyses of the abundance and composition of ammonia-oxidizing bacteria and ammonia-oxidizing archaea of a Chinese upland red soil under long-term fertilization practices,” Environ. Microbiol. 9, 2364–2374 (2007).CrossRef
    21.Z. J. Jia and R. Conrad, “Bacteria rather than Archaea dominate microbial ammonia oxidation in an agricultural soil,” Environ. Microbiol. 11, 1658–1671 (2009).CrossRef
    22.R. G. Joergensen and T. Mueller, “The fumigationextraction method to estimate soil microbial biomass: calibration of the kEN value,” Soil Biol. Biochem. 28, 33–37 (1996).CrossRef
    23.D. Kemnitz, S. Kolb, and R. Conrad, “High abundance of Crenarchaeota in a temperate acidic forest soil,” FEMS Microbiol. Ecol. 60, 442–448 (2007).CrossRef
    24.S. Leininger, T. Urich, M. Schloter, L. Schwark, J. Qi, and G. W. Nicol, “Archaea predominate among ammonia oxidizing prokaryotes in soils,” Nature 442, 806–809 (2006).CrossRef
    25.S. Levicnik-Höfferle, G. W. Nicol, L. Pal, J. Hacin, J. I. Prosser, and I. Mandic-Mulec, “Ammonium supply rate influences archaeal and bacterial ammonia oxidizers in a wetland soil vertical profile,” FEMS Microbiol. Ecol. 74, 302–315 (2010).CrossRef
    26.M. Lupatini, A. K. A. Suleiman, R. J. S. Jacques, Z. I. Antoniolli, E. E. Kuramae, and F. A. D. Camargo, “Soil-borne bacterial structure and diversity does not reflect community activity in Pampa biome,” PLoS One 8 (10), e76465 (2013). doi: 10.1371/journal. pone.0076465CrossRef
    27.W. Martens-Habbena, P. M. Berube, H. Urakawa, J. R. de la Torre, and D. A. Stahl, “Ammonia oxidation kinetics determine niche separation of nitrifying Archaea and Bacteria,” Nature 461, 976–979 (2009).CrossRef
    28.A. Mikkonen, M. Santalahti, K. Lappi, A.-M. Pulkkinen, L. Montonen, and L. Suominen, “Bacterial and archaeal communities in long-term contaminated surface and subsurface soil evaluated through coextracted RNA and DNA,” FEMS Microbiol. Ecol. 90 (1), 103–114 (2014).CrossRef
    29.S. Molin and M. Givskov, “Application of molecular tools for in situ monitoring of bacterial growth activity,” Environ. Microbiol. 1, 383–391 (1999).CrossRef
    30.G. W. Nicol, S. Leininger, C. Schleper, and J. I. Prosser, “The influence of soil pH on the diversity, abundance, and transcriptional activity of ammonia oxidizing Archaea and Bacteria,” Environ. Microbiol. 10, 2966–2978 (2008).CrossRef
    31.G. W. Nicol, D. Tscherko, L. Chang, U. Hammesfahr, and J. I. Prosser, “Crenarchaeal community assembly and microdiversity in developing soils at two sites associated with deglaciation,” Environ. Microbiol. 8, 1382–1393 (2006).CrossRef
    32.G. W. Nicol, G. Webster, L. A. Glover, and J. I. Prosser, “Differential response of archaeal and bacterial communities to nitrogen inputs and pH changes in upland pasture rhizosphere soil,” Environ. Microbiol. 6, 861–867 (2004).CrossRef
    33.T. Ochsenreiter, D. Selezi, A. Quaiser, L. Bonch-Osmolovskaya, and C. Schleper, “Diversity and abundance of Crenarchaeota in terrestrial habitats studied by 16S RNA surveys and real time PCR,” Environ. Microbiol. 5, 787–797 (2003).CrossRef
    34.D. Richter and D. Markewitz, “How deep is soil?” Bioscience 45, 600–609 (1995).CrossRef
    35.J. N. Rooney-Varga, M. W. Giewat, K. N. Duddleston, J. P. Chanton, and M. E. Hines, “Links between archaeal community structure, vegetation type and methanogenic pathway in Alaskan peatlands,” FEMS Microbiol. Ecol. 60, 240–251 (2007).CrossRef
    36.C. Rumpel and I. Kogel-Knabner, “Deep soil organic matter–a key, but poorly understood component of terrestrial C cycle,” Plant Soil 338, 143–158 (2011).CrossRef
    37.H. Schmidt and T. Eickhorst, “Detection and quantification of native microbial populations on soil-grown rice roots by catalyzed reporter deposition fluorescence in situ hybridization,” FEMS Microbiol. Ecol. 87, 390–402 (2014).CrossRef
    38.M. Stursová and P. Baldrian, “Effects of soil properties and management on the activity of soil organic matter transforming enzymes and the quantification of soilbound and free activity,” Plant Soil 338, 99–110 (2011).CrossRef
    39.D. L. Valentine, “Adaptations to energy stress dictate the ecology and evolution of the Archaea,” Nat. Rev. Microbiol. 5, 316–323 (2007).CrossRef
    40.E. D. Vance, P. C. Brookes, and D. S. Jenkinson, “An extraction method for measuring soil microbial biomass C,” Soil Biol. Biochem. 19 (6), 703–707 (1987).CrossRef
    41.C. B. Walker, J. R. de la Torre, M. G. Klotz, H. Urakawa, N. Pinel, and D. J. Arp, “Nitrosopumilus maritimus genome reveals unique mechanisms for nitrification and autotrophy in globally distributed marine Crenarchaea,” Proc. Natl. Acad. Sci. U.S.A. 107, 8818–8823 (2010).CrossRef
    42.K. Wallenius, H. Rita, A. Mikkonen, K. Lappi, K. Lindström, H. Hortikoinen, A. Raateland, and R. M. Niemi, “Effects of land use on the level, variation and spatial structure of soil enzyme activities and bacterial communities,” Soil Biol. Biochem. 43, 1464–1473 (2011).CrossRef
  • 作者单位:M. V. Semenov (1) (2)
    N. A. Manucharova (1)
    A. L. Stepanov (1)

    1. Faculty of Soil Science, Moscow State University, Leninskie gory, 119991, Moscow, Russia
    2. Dokuchaev Soil Science Institute, per. Pyzhevskii 7, Moscow, 119017, Russia
  • 刊物主题:Geotechnical Engineering & Applied Earth Sciences;
  • 出版者:Springer US
  • ISSN:1556-195X
文摘
The distribution of metabolically active cells of archaea and bacteria in the profiles of typical chernozems (Voronezh oblast) and brown semidesert soils (Astrakhan oblast) of natural and agricultural ecosystems was studied using the method of fluorescent in situ hybridization (FISH). The studied soils differed sharply in the microbial biomass and in the numbers of metabolically active cells of archaea and bacteria. The number of active bacterial cells was 3.5–7.0 times greater than that of archaea. In the arable chernozem, the numbers of active cells of archaea and bacteria were 2.6 and 1.5 times, respectively, lower than those in the chernozem under the shelterbelt. The agricultural use of the brown semidesert soil had little effect on the abundances of bacteria and archaea. The soil organic carbon content was the major factor controlling the numbers of metabolically active cells of both domains. However, the dependence of the abundance of bacteria on the organic matter content was more pronounced. The decrease in the organic carbon and total nitrogen contents down the soil profiles was accompanied by the decrease in the bacteria: archaea ratio attesting to a better adaptation of archaea to the permanent deficiency of carbon and nitrogen. The bacteria: archaea ratio can serve as an ecotrophic indicator of the state of soil microbial communities.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700