用户名: 密码: 验证码:
Lasiodiplodia sp. ME4-2, an endophytic fungus from the floral parts of Viscum coloratum, produces indole-3-carboxylic acid and other aromatic metabolites
详细信息    查看全文
  • 作者:Chao-Dong Qian (1)
    Yu-Hang Fu (1)
    Fu-Sheng Jiang (1)
    Zheng-Hong Xu (1)
    Dong-Qing Cheng (1)
    Bin Ding (1)
    Cheng-Xian Gao (1)
    Zhi-Shan Ding (1)

    1. Zhejiang Chinese Medical University
    ; Hangzhou ; Zhejiang province ; China
  • 关键词:Lasiodiplodia sp ; Floral endophytes ; Mistletoe ; Aromatic compounds
  • 刊名:BMC Microbiology
  • 出版年:2014
  • 出版时间:December 2014
  • 年:2014
  • 卷:14
  • 期:1
  • 全文大小:470 KB
  • 参考文献:1. Rodriguez, R, White, J, Arnold, A, Redman, R (2009) Fungal endophytes: diversity and functional roles. New Phytol 182: pp. 314-330 CrossRef
    2. Tan, R, Zou, W (2001) Endophytes: a rich source of functional metabolites. Nat Prod Rep 18: pp. 448-459 CrossRef
    3. Siegel, MR, Schardl, CL, Phillips, TD (1995) Incidence and compatibility of nonclavicipitaceous fungal endophytes in Festuca and Lolium grass species. Mycologia 87: pp. 196-202 CrossRef
    4. Schardl, CL, Leuchtmann, A, Spiering, MJ (2004) Symbioses of grasses with seedborne fungal endophytes. Annu Rev Plant Biol 55: pp. 315-340 CrossRef
    5. Rosenblueth, M, Mart铆nez-Romero, E (2006) Bacterial endophytes and their interactions with hosts. Mol Plant Microbe In 19: pp. 827-837 CrossRef
    6. Tanaka, A, Tapper, BA, Popay, A, Parker, EJ, Scott, B (2005) A symbiosis expressed non-ribosomal peptide synthetase from a mutualistic fungal endophyte of perennial ryegrass confers protection to the symbiotum from insect herbivory. Mol Microbiol 57: pp. 1036-1050 CrossRef
    7. Pirttil盲, AM, Joensuu, P, Pospiech, H, Jalonen, J, Hohtola, A (2004) Bud endophytes of Scots pine produce adenine derivatives and other compounds that affect morphology and mitigate browning of callus cultures. Physiol Plantarum 121: pp. 305-312 CrossRef
    8. Tudzynski, B (1997) Fungal phytohormones in pathogenic and mutualistic associations. Plant Relationships 5: pp. 167-184 CrossRef
    9. Stierle, A, Strobel, G, Stierle, D (1993) Taxol and taxane production by Taxomyces andreanae, an endophytic fungus of Pacific yew. Science 260: pp. 214-216 CrossRef
    10. Puri, SC, Verma, V, Amna, T, Qazi, GN, Spiteller, M (2005) An endophytic fungus from Nothapodytes foetida that produces camptothecin. J Nat Prod 68: pp. 1717-1719 CrossRef
    11. Findlay, JA, Buthelezi, S, Lavoie, R, Pe帽a-Rodriguez, L, Miller, JD (1995) Bioactive isocoumarins and related metabolites from conifer endophytes. J Nat Prod 58: pp. 1759-1766 CrossRef
    12. Eyberger, AL, Dondapati, R, Porter, JR (2006) Endophyte fungal isolates from Podophyllum peltatum produce podophyllotoxin. J Nat Prod 69: pp. 1121-1124 CrossRef
    13. Alvin, A, Miller, KI, Neilan, BA (2014) Exploring the potential of endophytes from medicinal plants as sources of antimycobacterial compounds. Microbiol Res 169: pp. 483-495 CrossRef
    14. Kharwar, RN, Mishra, A, Gond, SK, Stierle, A, Stierle, D (2011) Anticancer compounds derived from fungal endophytes: their importance and future challenges. Nat Prod Rep 28: pp. 1208-1228 CrossRef
    15. Aly, AH, Debbab, A, Kjer, J, Proksch, P (2010) Fungal endophytes from higher plants: a prolific source of phytochemicals and other bioactive natural products. Fungal Divers 41: pp. 1-16 CrossRef
    16. Heinig, U, Scholz, S, Jennewein, S (2013) Getting to the bottom of Taxol biosynthesis by fungi. Fungal Divers 60: pp. 161-170 CrossRef
    17. Miller, KI, Qing, C, Sze, DM-Y, Roufogalis, BD, Neilan, BA (2012) Culturable endophytes of medicinal plants and the genetic basis for their bioactivity. Microbial Ecol 64: pp. 431-449 CrossRef
    18. Schulz, B, Boyle, C, Draeger, S, R枚mmert, A-K, Krohn, K (2002) Endophytic fungi: a source of novel biologically active secondary metabolites. Mycol Res 106: pp. 996-1004 CrossRef
    19. Gunatilaka, AL (2006) Natural products from plant-associated microorganisms: distribution, structural diversity, bioactivity, and implications of their occurrence. J Nat Prod 69: pp. 509-526 CrossRef
    20. Kusari, S, Spiteller, M (2011) Are we ready for industrial production of bioactive plant secondary metabolites utilizing endophytes?. Nat Prod Rep 28: pp. 1203-1207 CrossRef
    21. Suryanarayanan, TS, Thirunavukkarasu, N, Govindarajulu, MB, Gopalan, V (2012) Fungal endophytes: an untapped source of biocatalysts. Fungal Divers 54: pp. 19-30 CrossRef
    22. Xiao, YY, Weng, JY, Fan, JS (2008) Mistletoe on ancient and Modern. Strait Pharmaceutical journal 20: pp. 45-47
    23. Hwang, TL, Leu, YL, Kao, SH, Tang, MC, Chang, HL (2006) Viscolin, a new chalcone from Viscum coloratum, inhibits human neutrophil superoxide anion and elastase release via a cAMP-dependent pathway. Free Radical Bio Med 41: pp. 1433-1441 CrossRef
    24. Kong, DY, Li, H, Luo, S, Lei, XH (1990) Studies on the chemical components of Viscum coloratum. VI. Chirality of the acyl group of viscumneoside IV. Yao Xue Xue Bao 25: pp. 349-352
    25. Chen, BN, Yang, GE, Li, JK, Du, HJ, Li, QS, Zhang, ZM (2009) Cytotoxic constituents from Viscum coloratum. Chem Nat Compd 45: pp. 547-549 CrossRef
    26. Per拧oh, D, Melcher, M, Flessa, F, Rambold, G (2010) First fungal community analyses of endophytic ascomycetes associated with Viscum album ssp. austriacum and its host Pinus sylvestris. Fungal Biol 114: pp. 585-596 CrossRef
    27. Per拧oh, D (2013) Factors shaping community structure of endophytic fungi-evidence from the Pinus-Viscum-system. Fungal Divers 60: pp. 55-69 CrossRef
    28. Kannan, K, Madhankumar, D, Prakash, NU, Muthezilan, R, Jamuna, G, Parthasarathy, N, Bhuvaneshwari, S (2011) Fungal endophytes: a preliminary report from marketed flowers. Intl J Appl Biol 2: pp. 14-18
    29. Li, Y, Sun, KL, Wang, Y, Fu, P, Liu, PP, Wang, C, Zhu, WM (2013) A cytotoxic pyrrolidinoindoline diketopiperazine dimer from the algal fungus Eurotium herbariorum HT-2. Chinese Chem Lett 24: pp. 1049-1052 CrossRef
    30. Tian, SZ, Pu, X, Luo, G, Zhao, LX, Xu, LH, Li, WJ, Luo, Y (2013) Isolation and characterization of new p-terphenyls with antifungal, antibacterial, and antioxidant activities from halophilic actinomycete Nocardiopsis gilva YIM 90087. J Agr Food Chem 61: pp. 3006-3012 CrossRef
    31. Anderton, MJ, Manson, MM, Verschoyle, RD, Gescher, A, Lamb, JH, Farmer, PB, Steward, WP, Williams, ML (2004) Pharmacokinetics and tissue disposition of indole-3-carbinol and its acid condensation products after oral administration to mice. Clin Cancer Res 10: pp. 5233-5241 CrossRef
    32. Yue, Q, Miller, CJ, White, JF, Richardson, MD (2000) Isolation and characterization of fungal inhibitors from Epichlo毛 festucae. J Agr Food Chem 48: pp. 4687-4692 CrossRef
    33. Forcat, S, Bennett, M, Grant, M, Mansfield, JW (2010) Rapid linkage of indole carboxylic acid to the plant cell wall identified as a component of basal defence in Arabidopsis against hrp mutant bacteria. Phytochemistry 71: pp. 870-876 CrossRef
    34. Gamir, J, Pastor, V, Cerezo, M, Flors, V (2012) Identification of indole-3-carboxylic acid as mediator of priming against Plectosphaerella cucumerina. Plant Physiol Bioch 61: pp. 169-179 CrossRef
    35. Dimitriadis, C, Gill, M, Harte, MF (1997) The first stereospecific approach to both enantiomers of mellein. Tetrahedron-Asymmetry 8: pp. 2153-2158 CrossRef
    36. Venkatasubbaiah, P, Chilton, WS (1990) Phytotoxins of Botryosphaeria obtusa. J Nat Prod 53: pp. 1628-1630 CrossRef
    37. Sun, H, Ho, CL, Ding, F, Soehano, I, Liu, XW, Liang, ZX (2012) Synthesis of (R)-mellein by a partially reducing iterative polyketide synthase. J Am Chem Soc 134: pp. 11924-11927 CrossRef
    38. Kalinov谩, B, Kindl, J, Jiros, P, Z谩cek, P, Vas铆ckov谩, S, Budes铆nsk媒, M, Valterov谩, I (2008) Composition and electrophysiological activity of constituents identified in male wing gland secretion of the bumblebee parasite Aphomia sociella. J Nat Prod 72: pp. 8-13 CrossRef
    39. Thiericke, R, Rohr, J (1993) Biological variation of microbial metabolites by precursor-directed biosynthesis. Nat Prod Rep 10: pp. 265-289 CrossRef
    40. Hua, D, Xu, P (2011) Recent advances in biotechnological production of 2-phenylethanol. Biotechnol Adv 29: pp. 654-660 CrossRef
    41. Lomascolo, A, Lesage-Meessen, L, Haon, M, Navarro, D, Antona, C, Faulds, C, Marcel, A (2001) Evaluation of the potential of Aspergillus niger species for the bioconversion of L-phenylalanine into 2-phenylethanol. World J Microb Biot 17: pp. 99-102 CrossRef
    42. Melkonyan, FS, Karchava, AV, Yurovskaya, MA (2008) Synthesis of N-substituted indole-3-carboxylic acid derivatives via Cu (I)-catalyzed intramolecular amination of aryl bromides. J Org Chem 73: pp. 4275-4278 CrossRef
    43. Davis, PJ, Gustafson, ME, Rosazza, JP (1976) Formation of indole-3-carboxylic acid by Chromobacterium violaceum. J Bacteriol 126: pp. 544
    44. Magnus, V, Simaga, S, IskriC, S, Kveder, S (1982) Metabolism of tryptophan, indole-3-acetic acid, and related compounds in parasitic plants from the genus Orobanche. Plant Physiol 69: pp. 853-858 CrossRef
    45. Alves, A, Crous, P, Correia, A, Phillips, A (2008) Morphological and molecular data reveal cryptic speciation in Lasiodiplodia theobromae. Fungal Divers 28: pp. 1-13
    46. Chaverri, P, Gazis, RO, Samuels, GJ (2011) Trichoderma amazonicum, a new endophytic species on Hevea brasiliensis and H. guianensis from the Amazon basin. Mycologia 103: pp. 139-151 CrossRef
    47. Stewart, CN, Via, LE (1993) A rapid CTAB DNA isolation technique useful for RAPD fingerprinting and other PCR applications. Biotechniques 14: pp. 748-750
    48. White, TJ, Bruns, T, Lee, S, Taylor, J Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics. In: Innis, MA, Gelfand, DH, Sninsky, JJ, White, TJ eds. (1990) PCR Protocols: A Guide to Methods and Applications. Academic Press Inc, New York, pp. 315-322 CrossRef
    49. Altschul, SF, Gish, W, Miller, W, Myers, EW, Lipman, DJ (1990) Basic local alignment search tool. J Mol Biol 215: pp. 403-410 CrossRef
    50. Thompson, JD, Higgins, DG, Gibson, TJ (1994) CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res 22: pp. 4673-4680 CrossRef
    51. Saitou, N, Nei, M (1987) The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 4: pp. 406-425
    52. Tamura, K, Dudley, J, Nei, M, Kumar, S (2007) MEGA4: molecular evolutionary genetics analysis (MEGA) software version 4.0. Mol Biol Evol 24: pp. 1596-1599 CrossRef
  • 刊物主题:Microbiology; Biological Microscopy; Fungus Genetics; Parasitology; Virology; Life Sciences, general;
  • 出版者:BioMed Central
  • ISSN:1471-2180
文摘
Background Studies on endophytes, a relatively under-explored group of microorganisms, are currently popular amongst biologists and natural product researchers. A fungal strain (ME4-2) was isolated from flower samples of mistletoe (Viscum coloratum) during a screening program for endophytes. As limited information on floral endophytes is available, the aim of the present study is to characterise fungal endophytes using their secondary metabolites. Results ME4-2 grew well in both natural and basic synthetic media but produced no conidia. Sequence analysis of its internal transcribed spacer rDNA demonstrated that ME4-2 forms a distinct branch within the genus Lasiodiplodia and is closely related to L. pseudotheobromae. This floral endophyte was thus identified as Lasiodiplodia sp. based on its molecular biological characteristics. Five aromatic compounds, including cyclo-(Trp-Ala), indole-3-carboxylic acid (ICA), indole-3-carbaldehyde, mellein and 2-phenylethanol, were found in the culture. The structures of these compounds were determined using spectroscopic methods combined with gas chromatography. To the best of our knowledge, our work is the first to report isolation of these aromatic metabolites from a floral endophyte. Interestingly, ICA, a major secondary metabolite produced by ME4-2, seemed to be biosynthesized via an unusual pathway. Furthermore, our results indicate that the fungus ME4-2 is a potent producer of 2-phenylethanol, which is a common component of floral essential oils. Conclusions This study introduces a fungal strain producing several important aromatic metabolites with pharmaceutical or food applications and suggests that endophytic fungi isolated from plant flowers are promising natural sources of aromatic compounds.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700