用户名: 密码: 验证码:
Monitoring enzyme reaction and screening of inhibitors of acetylcholinesterase by quantitative matrix-assisted laser desorption/ionization fourier transform mass spectrometry
详细信息    查看全文
  • 作者:Zhe Xu (1)
    Shengjun Yao (1)
    Yuanlong Wei (1)
    Jing Zhou (1)
    Li Zhang (1)
    Cuihong Wang (1)
    Yinlong Guo (1)
  • 刊名:Journal of The American Society for Mass Spectrometry
  • 出版年:2008
  • 出版时间:December 2008
  • 年:2008
  • 卷:19
  • 期:12
  • 页码:1849-1855
  • 全文大小:524KB
  • 参考文献:1. Copeland, R. A. / Evaluation of Enzyme Inhibitors in Drug Discovery: A Guide for Medicinal Chemists and Pharmacologists, Wiley Interscience: Hoboken, NJ, 2005; p 296
    2. Imming, P.; Sinning, C.; Meyer, A. Drugs, Their Targets and the Nature and Number of Drug Targets. / Nat. Rev. Drug Disc. 2006, / 5, 821-34. CrossRef
    3. Noble, M. E. M.; Endicott, J. A.; Johnson, L. N. Protein Kinase Inhibitors: Insights into Drug Design from Structure. / Science 2004, / 303, 1800-805. CrossRef
    4. Gros, C.; Noel, N.; Souque, A.; Schwartz, J.; Danvy, D.; Plaquevent, J.; Duhamel, L.; Duhamel, P.; Lecomte, J.; Bralet, J. Mixed Inhibitors of Angiotensin-Converting Enzyme (EC 3.4.15.1) and Enkephalinase (EC 3.4.24.11): Rational Design, Properties, and Potential Cardiovascular Applications of Glycopril and Alatriopril. / Proc. Natl. Acad. Sci. U. S. A. 1991, / 88, 4210-214. CrossRef
    5. von Ahsen, O.; Bomer, U. High-Throughput Screening for Kinase Inhibitors. / ChemBioChem 2005, / 6, 481-90. CrossRef
    6. Costagli, C.; Galli, A. Inhibition of Cholinesterase-associated Aryl Acylamidase Activity by Anticholinesterase Agents: Focus on Drugs Potentially Effective in Alzheimer’s Disease. / Biochem. Pharmacol. 1998, / 55, 1733-737. CrossRef
    7. Salehi, A.; Delcroix, J. D.; Swaab, D. F. Alzheimer’s Disease and NGF Signaling. / J. Neural Transm. 2004, / 111, 323-45. CrossRef
    8. Bartolini, M.; Andrisano, V.; Wainer, I. W. Development and Characterization of an Immobilized Enzyme Reactor Based on Glyceraldehyde-3-phosphate Dehydrogenase for On-line Enzymatic Studies. / J. Chromatogr. A 2003, / 987, 331-40. CrossRef
    9. Hemmila, I. A.; Hurskainen, P. Novel Detection Strategies for Drug Discovery. / Drug Discov. Today 2002, / 7, S150-S156. CrossRef
    10. Fujii, T.; Harada, H.; Koyama, T.; Nakajima, Y.; Kawashima, K. Effects of Physostigmine and Calcium on Acetylcholine Efflux from the Hippocampus of Freely Moving Rats as Determined by In Vivo Microdialysis and a Radioimmunoassay. / Neurosci. Lett. 2000, / 289, 181-84. CrossRef
    11. Ellman, G. L.; Courtney, K.D.; Andres, V.; Featherstone, R.M. A New and Rapid Colorimetric Determination of Acetylcholinesterase Activity. / Biochem. Pharmacol. 1961, / 7, 88-0. CrossRef
    12. Ozbal, C. C.; LaMarr, W. A.; Linton, J. R.; Green, D. F.; Katz, A.; Morrison, T. B.; Brenan, C. J. H. High Throughput Screening via Mass Spectrometry: A Case Study Using Acetylcholinesterase. / Assay Drug Dev. Technol. 2004, / 2, 373-81.
    13. Bothner, B.; Chavez, R.; Wei, J.; Strupp, C.; Phung, Q.; Schneemann, A.; Siuzdak, G. Monitoring Enzyme Catalysis with Mass Spectrometry. / J. Biol. Chem. 2000, / 275, 13455-3459. CrossRef
    14. Houston, C. T.; Taylor, W. P.; Widlanski, T. S.; Reilly, J. P. Investigation of Enzyme Kinetics Using Quench-Flow Techniques with MALDI-TOF Mass Spectrometry. / Anal. Chem. 2000, / 72, 3311-319. CrossRef
    15. Liesener, A.; Karst, U. Monitoring Enzymatic Conversions by Mass Spectrometry: A Critical Review. / Anal. Bioanal. Chem. 2005, / 382, 1451-464. CrossRef
    16. de Boer, A. R.; Lingeman, H.; Niessen, W. M. A.; Irth, H. Mass Spectrometry-Based Biochemical Assays for Enzyme Inhibitor Screening. / Trac-Trend. Anal. Chem. 2007, / 26, 867-83. CrossRef
    17. Cancilla, M. T.; Leavell, M. D.; Chow, J.; Leary, J. A. Mass Spectrometry and Immobilized Enzymes for the Screening of Inhibitor Libraries. / Proc. Natl. Acad. Sci. U. S. A. 2000, / 97, 12008. CrossRef
    18. Ge, X.; Sirich, T. L.; Beyer, M. K.; Desaire, H.; Leary, J. A. A Strategy for the Determination of Enzyme Kinetics Using Electrospray Ionization with an Ion Trap Mass Spectrometer. / Anal. Chem. 2001, / 73, 5078-082. CrossRef
    19. Verdugo, D. E.; Cancilla, M. T.; Ge, X.; Gray, N. S.; Chang, Y. T.; Schultz, P. G.; Negishi, M.; Leary, J. A.; Bertozzi, C. R. Discovery of Estrogen Sulfotransferase Inhibitors from a Purine Library Screen. / J. Med. Chem. 2001, / 44, 2683-686. CrossRef
    20. Pi, N.; Armstrong, J. I.; Bertozzi, C. R.; Leary, J. A. Kinetic Analysis of NodST Sulfotransferase Using an Electrospray Ionization Mass Spectrometry Assay. / Biochemistry 2002, / 41, 13283-3288. CrossRef
    21. Gao, H.; Leary, J. A. Multiplex Inhibitor Screening and Kinetic Constant Determinations for Yeast Hexokinase Using Mass Spectrometry Based Assays. / J. Am. Soc. Mass Spectrom. 2003, / 14, 173-81. CrossRef
    22. Attwood, P. V.; Geeves, M. A. Kinetics of an Enzyme-Catalyzed Reaction Measured by Electrospray Ionization Mass Spectrometry Using a Simple Rapid Mixing Attachment. / Anal. Biochem. 2004, / 334, 382-89. CrossRef
    23. Dennhart, N.; Letzel, T. Mass Spectrometric Real-Time Monitoring of Enzymatic Glycosidic Hydrolysis, Enzymatic Inhibition and Enzyme Complexes. / Anal. Bioanal. Chem. 2006, / 386, 689-98. CrossRef
    24. de Jong, C. F.; Derks, R. J. E.; Bruyneel, B.; Niessen, W.; Irth, H. High-Performance Liquid Chromatography-Mass Spectrometry-Based Acetylcholinesterase Assay for the Screening of Inhibitors in Natural Extracts. / J. Chromatogr. A 2006, / 1112, 303-10. CrossRef
    25. Hows, M. E. P.; Organ, A. J.; Murray, S.; Dawson, L. A.; Foxton, R.; Heidbreder, C.; Hughes, Z. A.; Lacroix, L.; Shah, A. J. High-Performance Liquid Chromatography/Tandem Mass Spectrometry Assay for the Rapid High Sensitivity Measurement of Basal Acetylcholine from Microdialysates. / J. Neurosci. Methods 2002, / 121, 33-9. CrossRef
    26. Shih, T.-M.; Scremin, O.; Roch, M.; Huynh, L.; Sun, W.; Jenden, D. Cerebral Acetylcholine and Choline Contents and Turnover Following Low-Dose Acetylcholinesterase Inhibitors Treatment in Rats. / Arch. Toxicol. 2006, / 80, 761-67. CrossRef
    27. Schriemer, D. C.; Bundle, D. R.; Li, L.; Hindsgaul, O. Micro-Scale Frontal Affinity Chromatography with Mass Spectrometric Detection: A New Method for the Screening of Compound Libraries. / Angew. Chem. Int. Ed. 1998, / 37, 3383-387. CrossRef
    28. Lyubarskaya, Y. V.; Carr, S. A.; Dunnington, D.; Prichett, W. P.; Fisher, S. M.; Appelbaum, E. R.; Jones, C. S.; Karger, B. L. Screening for High-Affinity Ligands to the Src SH2 Domain Using Capillary Isoelectric Focusing-Electrospray Ionization Ion Trap Mass Spectrometry. / Anal. Chem. 1998, / 70, 4761-770. CrossRef
    29. Markgren, P. O.; Hamalainen, M.; Danielson, U. H. Kinetic Analysis of the Interaction between HIV-1 Protease and Inhibitors Using Optical Biosensor Technology. / Anal. Biochem. 2000, / 279, 71-8. CrossRef
    30. Tang, Z. M.; Kang, J. W. Enzyme Inhibitor Screening by Capillary Electrophoresis with an On-column Immobilized Enzyme Microreactor Created by an Ionic Binding Technique. / Anal. Chem. 2006, / 78, 2514-520. CrossRef
    31. Wall, D. B.; Finch, J. W.; Cohen, S. A. Comparison of Desorption/Ionization on Silicon (DIOS) Time-of-Flight and Liquid Chromatography/Tandem Mass Spectrometry for Assaying Enzyme-Inhibition Reactions. / Rapid Commun. Mass Spectrom. 2004, / 18, 1482-486. CrossRef
    32. Thomas, J. J.; Shen, Z.; Crowell, J. E.; Finn, M. G.; Siuzdak, G. Desorption/ionization on silicon (DIOS): A Diverse Mass Spectrometry Platform for Protein Characterization. / Proc. Natl. Acad. Sci. U. S. A. 2001, / 98, 4932-937. CrossRef
    33. Hu, L.; Jiang, G.; Xu, S.; Pan, C.; Zou, H. Monitoring Enzyme Reaction and Screening Enzyme Inhibitor Based on MALDI-TOF-MS Platform with a Matrix of Oxidized Carbon Nanotubes. / J. Am. Soc. Mass Spectrom. 2006, / 17, 1616-619. CrossRef
    34. Uutela, P.; Reinila, R.; Piepponen, P.; Ketola, R. A.; Kostiainen, R. Analysis of Acetylcholine and Choline in Microdialysis Samples by Liquid Chromatography/Tandem Mass Spectrometry. / Rapid Commun. Mass Spectrom. 2005, / 19, 2950-956. CrossRef
    35. Keski-Rahkonen, P.; Lehtonen, M.; Ihalainen, J.; Sarajarvi, T.; Auriola, S. Quantitative Determination of Acetylcholine in Microdialysis Samples Using Liquid Chromatography/Atmospheric Pressure Spray Ionization Mass Spectrometry. / Rapid Commun. Mass Spectrom. 2007, / 21, 2933-943. CrossRef
    36. Zhang, M.-Y.; Hughes, Z. A.; Kerns, E. H.; Lin, Q.; Beyer, C. E. Development of a Liquid Chromatography/Tandem Mass Spectrometry Method for the Quantitation of Acetylcholine and Related Neurotransmitters in Brain Microdialysis Samples. / J. Pharm. Biomed. 2007, / 44, 586-93. CrossRef
    37. Dunphy, R.; Burinsky, D. J. Detection of Choline and Acetylcholine in a Pharmaceutical Preparation Using High-Performance Liquid Chromatography/Electrospray Ionization Mass Spectrometry. / J. Pharm. Biomed. 2003, / 31, 905-15. CrossRef
    38. Frisch, M.; Trucks, G.; Schlegel, H.; Scuseria, G.; Robb, M.; Cheeseman, J.; Montgomery, J.; Vreven, T.; Kudin, K.; Burant, J.; Millam, J.; Iyengar, S.; Tomasi, J.; Barone, V.; Mennucci, B.; Cossi, M.; Scalmani, G.; Rega, N.; Petersson, G.; Nakatsuji, H.; Hada, M.; Ehara, M.; Toyota, K.; Fukuda, R.; Hasegawa, J.; Ishida, M.; Nakajima, T.; Honda, Y.; Kitao, O.; Nakai, H.; Klene, M.; Li, X.; Knox, J.; Hratchian, H.; Cross, J.; Adamo, C.; Jaramillo, J.; Gomperts, R.; Stratmann, R.; Yazyev, O.; Austin, A.; Cammi, R.; Pomelli, C.; Ochterski, J.; Ayala, P.; Morokuma, K.; Voth, G.; Salvador, P.; Dannenberg, J.; Zakrzewski, V.; Dapprich, S.; Daniels, A.; Strain, M.; Farkas, O.; Malick, D.; Rabuck, A.; Raghavachari, K.; Foresman, J.; Ortiz, J.; Cui, Q.; Baboul, A.; Clifford, S.; Cioslowski, J.; Stefanov, B.; Liu, G.; Liashenko, A.; Piskorz, P.; Komaromi, I.; Martin, R.; Fox, D.; Keith, T.; Al-Laham, M.; Peng, C.; Nanayakkara, A.; Challacombe, M.; Gill, P.; Johnson, B.; Chen, W.; Wong, M.; Gonzalez, C.; Pople, J. / Gaussian 03, Revision B. 01; Gaussian, Inc: Pittsburgh, PA, 2003.
    39. Taylor, K. B. / Enzyme Kinetics and Mechanisms, Kluwer Academic Publishers: Dordrecht, The Netherlands, 2002; p 244.
    40. De Jaco, A.; Comoletti, D.; Kovarik, Z.; Gaietta, G.; Radic, Z.; Lockridge, O.; Ellisman, M. H.; Taylor, P. A Mutation Linked with Autism Reveals a Common Mechanism of Endoplasmic Reticulum Retention for the {alpha},beta-Hydrolase Fold Protein Family. / J. Biol. Chem. 2006, / 281, 9667-676. CrossRef
    41. Al-Jafari, A. A.; Kamal, M. A.; Alhomida, A. S. Sensitivity of Bovine Retinal Acetylcholinesterase (E.C. 3.1.1.7) Toward Tacrine: Kinetic Characterization. / J. Biochem. Mol. Toxicol. 1998, / 12, 245-51. CrossRef
    42. Houghton, P. J.; Howes, M. J. Natural Products and Derivatives Affecting Neurotransmission Relevant to Alzheimer’s and Parkinson’s Disease. / Neurosignals 2005, / 14, 6-2. CrossRef
    43. Hogenauer, K.; Baumann, K.; Enz, A.; Mulzer, J. Synthesis and Acetylcholinesterase Inhibition of 5-Desamino Huperzine A Derivatives. / Bioorg. Med. Chem. Lett. 2001, / 11, 2627-630. CrossRef
    44. Greenblatt, H.M.; Guillou, C.; Guenard, D.; Argaman, A.; Botti, S.; Badet, B.; Thal, C.; Silman, I.; Sussman, J. L. The Complex of a Bivalent Derivative of Galanthamine with Torpedo Acetylcholinesterase Displays Drastic Deformation of the Active-Site Gorge: Implications for Structure-Based Drug Design. / J. Am. Chem. Soc. 2004, / 126, 15405-5411. CrossRef
    45. Rakonczay, Z. Potencies and Selectivities of Inhibitors of Acetylcholinesterase and Its Molecular Forms in Normal and Alzheimer’s Disease Brain. / Acta. Biol. Hung. 2003, / 54, 183-89. CrossRef
  • 作者单位:Zhe Xu (1)
    Shengjun Yao (1)
    Yuanlong Wei (1)
    Jing Zhou (1)
    Li Zhang (1)
    Cuihong Wang (1)
    Yinlong Guo (1)

    1. Shanghai Mass Spectrometry Center, Shanghai Institute of Organic Chemistry, Chinese Academy of Science, 200032, Shanghai, China
文摘
A matrix-assisted laser desorption/ionization Fourier transform mass spectrometry (MALDI-FTMS)-based assay was developed for kinetic measurements and inhibitor screening of acetylcholinesterase. Here, FTMS coupled to MALDI was applied to quantitative analysis of choline using the ratio of choline/acetylcholine without the use of additional internal standard, which simplified the experiment. The Michaelis constant (K m) of acetylcholinesterase (AChE) was determined to be 73.9 μmol L? by this approach. For Huperzine A, the linear mixed inhibition of AChE reflected the presence of competitive and noncompetitive components. The half maximal inhibitory concentration (IC50) value of galantamine obtained for AChE was 2.39 μmol L?. Inhibitory potentials of Rhizoma Coptidis extracts were identified with the present method. In light of the results the referred extracts as a whole showed inhibitory action against AChE. The use of high-resolution FTMS largely eliminated the interference with the determination of ACh and Ch, produced by the low-mass compounds of chemical libraries for inhibitor screening. The excellent correlation with the reported kinetic parameters confirms that the MS-based assay is both accurate and precise for determining kinetic constants and for identifying enzyme inhibitors. The obvious advantages were demonstrated for quantitative analysis and also high-throughput characterization. This study offers a perspective into the utility of MALDI-FTMS as an alternate quantitative tool for inhibitor screening of AChE.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700