用户名: 密码: 验证码:
On the attitude stabilization of a rigid spacecraft using two skew control moment gyros
详细信息    查看全文
  • 作者:Haichao Gui (1) (2)
    Lei Jin (1)
    Shijie Xu (1)
    Jun Zhang (3)

    1. School of Astronautics
    ; Beihang University ; Beijing ; 100191 ; People鈥檚 Republic of China
    2. Department of Earth and Space Science and Engineering
    ; York University ; Toronto ; ON ; M3J 1P3 ; Canada
    3. National Laboratory of Space Intelligent Control
    ; Beijing ; 100190 ; People鈥檚 Republic of China
  • 关键词:Attitude stabilization ; Control moment gyro ; Controllability ; Nonholonomic constraint ; Stabilizability
  • 刊名:Nonlinear Dynamics
  • 出版年:2015
  • 出版时间:February 2015
  • 年:2015
  • 卷:79
  • 期:3
  • 页码:2079-2097
  • 全文大小:866 KB
  • 参考文献:1. O鈥機onnor, B.J., Morine, L.A.: A description of the CMG and its application to space vehicle control. J. Spacecr. Rocket. 6(3), 225鈥?31 (1969) CrossRef
    2. Kusuda, Y., Takahashi, M.: Feedback control with nominal inputs for agile satellites using control moment gyros. J. Guid. Control Dyn. 34(4), 1209鈥?218 (2011). doi:10.2514/1.49410 CrossRef
    3. Hu, Q., Xiao, B.: Fault-tolerant sliding mode attitude control for flexible spacecraft under loss of actuator effectiveness. Nonlinear Dyn. 64, 13鈥?3 (2011). doi:10.1007/s11071-010-9842-z CrossRef
    4. Zhang, R., Qiao, J., Li, T., Guo, L.: Robust fault-tolerant control for flexible spacecraft against partial actuator failures. Nonlinear Dyn. (2014). doi:10.1007/s11071-014-1243-2
    5. Crouch, P.E.: Spacecraft attitude control and stabilization: application of geometric control theory to rigid body models. IEEE Trans. Autom. Control 29(4), 321鈥?31 (1984). doi:10.1109/TAC.1984.1103519 CrossRef
    6. Byrnes, C.I., Isidori, A.: On the attitude stabilization of a rigid spacecraft. Automatica 27(1), 87鈥?5 (1991). doi:10.1016/0005-1098(91)90008-P CrossRef
    7. Aeyels, D., Szafranski, M.: Comments on the stabilizability of the angular velocity of a rigid body. Syst. Control Lett. 10(1), 35鈥?9 (1988). doi:10.1016/0167-6911(88)90037-0 CrossRef
    8. Andriano, V.: Global feedback stabilization of the angular velocity of a symmetric rigid body. Syst. Control Lett. 20(5), 361鈥?64 (1993). doi:10.1016/0167-6911(93)90014-W
    9. Bajodah, A.H.: Asymptotic perturbed feedback linearization of underactuated Euler鈥檚 dynamics. Int. J. Control 82(10), 1856鈥?869 (2009). doi:10.1080/00207170902788613 CrossRef
    10. Tsiotras, P., Longuski, J.M.: Spin-axis stabilization of symmetric spacecraft with two control torques. Syst. Control Lett. 23(6), 395鈥?02 (1994). doi:10.1016/0167-6911(94)90093-0 CrossRef
    11. Zhang, H., Wang, F., Trivailob, P.M.: Spin-axis stabilization of underactuated rigid spacecraft under sinusoidal disturbance. Int. J. Control 81(12), 1901鈥?909 (2009). doi:10.1080/00207170801930217 CrossRef
    12. Krishnan, H., Reyhanoglu, M., McClamroch, N.H.: Attitude stabilization of a rigid spacecraft using two control torques: a nonlinear control approach based on the spacecraft attitude dynamics. Automatica 30(6), 87鈥?5 (1994). doi:10.1016/0005-1098(94)90196-1 CrossRef
    13. Morin, P., Samson, C.: Time-varying exponential stabilization of a rigid spacecraft with two control torques. IEEE Trans. Autom. Control 42(4), 528鈥?34 (1997). doi:10.1109/9.566663 CrossRef
    14. Tsiotras, P., Corless, M., Longuski, J.M.: A novel approach to the attitude control of axisymmetric spacecraft. Automatica 31(8), 1099鈥?112 (1995). doi:10.1016/0005-1098(95)00010-T CrossRef
    15. Tsiotras, P., Luo, J.: Control of underactuated spacecraft with bounded inputs. Automatica 36(8), 1153鈥?169 (2000). doi:10.1016/S0005-1098(00)00025-X CrossRef
    16. Kim, S., Kim, Y.: Sliding mode stabilizing control law of underactuated spacecraft. In: Proceedings of the AIAA Guidance, Navigation and Control Conference and Exhibit, Denver, USA, August, 2000, AIAA-2000-4045
    17. Casagrandea, D., Astolfi, A., Parisini, T.: Global asymptotic stabilization of the attitude and the angular rates of an underactuated non-symmetric rigid body. Automatica 44(7), 1781鈥?789 (2008). doi:10.1016/j.automatica.2007.11.022
    18. Teel, A.R., Sanfelice, R.G.: On robust, global stabilization of the attitude of an underactuated rigid body using hybrid feedback. In: Proceedings of the 2008 American Control Conference, Seattle, Washington, USA, June, 2008, pp. 2909鈥?914
    19. Krishnan, H., McClamroch, N.H., Reyhanoglu, M.: Attitude stabilization of a rigid spacecraft using two momentum wheel actuators. J. Guid. Control Dyn. 18(2), 256鈥?63 (1995). doi:10.2514/3.21378 CrossRef
    20. Boyer, F., Alamir, M.: Further results on the controllability of a two-wheeled satellite. J. Guid. Control Dyn. 30(2), 611鈥?19 (2007). doi:10.2514/1.21505 CrossRef
    21. Horri, N.M., Palmer, P.: Practical implementation of attitude-control algorithms for an underactuated satellite. J. Guid. Control Dyn. 35(1), 40鈥?0 (2012). doi:10.2514/1.54075 CrossRef
    22. Gui, H., Jin, L., Xu, S.: Attitude maneuver control of a two-wheeled spacecraft with bounded wheel speeds. Acta Astronaut. 88, 98鈥?07 (2013). doi:10.1016/j.actaastro.2013.03.006 CrossRef
    23. Marguiles, G., Aubrun, J.N.: Geometric theory of single gimbal control moment gyroscope systems. J. Astronaut. Sci. 26(2), 159鈥?91 (1978)
    24. Wie, B.: Singularity analysis and visualization for single-gimbal control moment gyro systems. J. Guid. Control Dyn. 27(2), 271鈥?82 (2004). doi:10.2514/1.9167 CrossRef
    25. Bedrossian, N.S., Paradiso, J., Bergmann, E.V., Rowell, D.: Redundant single gimbal control moment gyroscope singularity analysis. J. Guid. Control Dyn. 13(6), 1096鈥?101 (1990). doi:10.2514/3.20584 CrossRef
    26. Kurokawa, H.: Survey of theory and steering laws of single gimbal control moment gyros. J. Guid. Control Dyn. 30(5), 1331鈥?340 (2007). doi:10.2514/1.27316 CrossRef
    27. Leve, F.A., Fitz-Coy, N.G.: Hybrid steering logic for single-gimbal control moment gyroscopes. J. Guid. Control Dyn. 33(4), 1202鈥?212 (2010). doi:10.2514/1.46853 CrossRef
    28. Bhat, S., Tiwari, P.: Controllability of spacecraft attitude using control moment gyroscopes. IEEE Trans. Autom. Control 54(3), 585鈥?90 (2009). doi:10.1109/TAC.2008.2008324 CrossRef
    29. Gui, H., Guan, H., Jin, L., Xu, S.: Analysis of small-time local controllability of spacecraft attitude using two control moment gyros. In: Proceeding of the 22nd AAS/AIAA Space Flight Mechanics Meeting, Charleston, SC, pp. 1047鈥?058 (2012)
    30. Kwon, S., Shimomura, T., Okubo, H.: Pointing control of spacecraft using two SGCMGs via LPV control theory. Acta Astronaut. 68(7鈥?), 1168鈥?175 (2011). doi:10.1016/j.actaastro.2010.10.001 CrossRef
    31. Yamada, K., Jikuya, I., Kwak, O.: Rate damping of a spacecraft using two single-gimbal control moment gyros. J. Guid. Control Dyn. 36(6), 1606鈥?623 (2013). doi:10.2514/1.60693 CrossRef
    32. Han, C., Pechev, A.: Underactuated satellite attitude control with two parallel CMGs. In: Proceedins of the IEEE International Conference Control and Automation, Guangzhou, China, June, 2007, pp. 666鈥?70
    33. Jin, L., Xu, S.: Underactuated spacecraft angular velocity stabilization and three-axis attitude stabilization using two single gimbal control moment gyros. Acta. Mech. Sin. 26(2), 279鈥?88 (2010). doi:10.1007/s10409-009-0272-4 CrossRef
    34. Kasai, S., Kojima, H., Satoh, M.: Spacecraft attitude maneuver using two single-gimbal control moment gyros. Acta Astronaut. 84, 88鈥?9 (2013). doi:10.1016/j.actaastro.2012.07035 CrossRef
    35. Gui, H., Jin, L., Xu, S.: Maneuver planning of a rigid spacecraft with two skew control moment gyros. Acta Astronaut. 104(1), 293鈥?03 (2014). doi:10.1016/j.actaastro.2014.08.010
    36. Gui, H., Jin, L., Xu, S., Hu, Q.: Attitude stabilization of a spacecraft by two skew single-gimbal control moment gyros. In: Proceedings of the AIAA Guidance, Navigation, and Control Conference, Boston, Massachusetts, USA, 2013, AIAA 2013鈥?794
    37. Bajodah, A.H., Hodges, D.H., Chen, Y.H.: Inverse dynamics of servo-constraints based on the generalized inverse. Nonlinear Dyn. 39(1鈥?), 179鈥?96 (2005). doi:10.1007/S11071-005-1925-X
    38. Bajodah, A.H.: Singularly perturbed feedback linearization with linear attitude deviation dynamics realization. Nonlinear Dyn. 53(4), 321鈥?43 (2008). doi:10.1007/s11071-007-9316-0 CrossRef
    39. Basto-Gon莽alves, J.: Second-order conditions for local controllability. Syst. Control Lett. 35(5), 287鈥?90 (1998). doi:10.1016/S0167-6911(98)00067-X
    40. Brockett, R.W.: Asymptotic stability and feedback stabilization. In: Millman, R.S., Sussmann, H.J. (eds.) Differential Geometric Control Theory, pp. 181鈥?91. Birkh盲user, Boston (1983)
    41. Stefani, G.: A sufficient condition for extremality. In: Analysis and Opimizations of Systems, Lecture Notes in Control and Information Sciences. Springer, Berlin, Vol. 111, pp. 270鈥?81 (1988)
    42. Sussman, H.J.: Subanalytic sets and feedback control. J. Differ. Equ. 31(1), 31鈥?2 (1979). doi:10.1016/0022-0396(79)90151-7 CrossRef
    43. Khalil, H.K.: Nonlinear Systems, 3rd edn. Prentice Hall, Englewood Cliffs (2002)
  • 刊物类别:Engineering
  • 刊物主题:Vibration, Dynamical Systems and Control
    Mechanics
    Mechanical Engineering
    Automotive and Aerospace Engineering and Traffic
  • 出版者:Springer Netherlands
  • ISSN:1573-269X
文摘
The attitude control of a rigid spacecraft with two skew single-gimbal control moment gyros (CMGs), which is subject to an underactuated nonholonomic constraint, is investigated. Nonlinear control theory is used to show that the combined dynamics of the spacecraft-CMG system are small-time locally controllable (STLC) from and feedback stabilizable to any equilibrium where two CMGs never encounter certain special configurations. Specially, the attitude stabilization issue is approached under the restriction that the total angular momentum of the spacecraft-CMG system is zero, which not only guarantees that the feasible equilibrium attitude can be any orientation but also renders STLC for these attitudes. In order to overcome the troublesome singular problem of two skew CMGs, a nonlinear approximation of the full attitude equations is derived for control law design by assuming that the spacecraft angular velocity is small. A novel singular quaternion stabilization law is then proposed to stabilize the spacecraft attitude with bounded angular velocities, which in turn ensures the satisfaction of the small angular velocity assumption during the entire control process. Numerical examples and experimental results validate the effectiveness of the proposed control method in stabilizing the full spacecraft-CMG system.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700