用户名: 密码: 验证码:
In silico polymorphism analysis for the development of simple sequence repeat and transposon markers and construction of linkage map in cultivated peanut
详细信息    查看全文
  • 作者:Kenta Shirasawa (1)
    Padmalatha Koilkonda (1)
    Koh Aoki (1) (6)
    Hideki Hirakawa (1)
    Satoshi Tabata (1)
    Manabu Watanabe (2)
    Makoto Hasegawa (2)
    Hiroyuki Kiyoshima (2)
    Shigeru Suzuki (2)
    Chikara Kuwata (2)
    Yoshiki Naito (3)
    Tsutomu Kuboyama (4)
    Akihiro Nakaya (5)
    Shigemi Sasamoto (1)
    Akiko Watanabe (1)
    Midori Kato (1)
    Kumiko Kawashima (1)
    Yoshie Kishida (1)
    Mitsuyo Kohara (1)
    Atsushi Kurabayashi (1)
    Chika Takahashi (1)
    Hisano Tsuruoka (1)
    Tsuyuko Wada (1)
    Sachiko Isobe (1)
  • 关键词:DNA marker ; Genetic linkage map ; Peanut (Arachis hypogaea) ; QTL analysis ; Ratio of oleic/linoleic acid (O/L ratio)
  • 刊名:BMC Plant Biology
  • 出版年:2012
  • 出版时间:December 2012
  • 年:2012
  • 卷:12
  • 期:1
  • 全文大小:910KB
  • 参考文献:1. Krapovickas A, Gregory W: Taxonomia del genero Arachis (Leguminosae). / Bonplandia 1994, 8:1-86.
    2. Krapovickas A, Gregory W: Taxonomy of the genus Arachis (Leguminosae). / Bonplandia 2007, 16:1-05.
    3. Temsch EM, Greilhuber J: Genome size variation in Arachis hypogaea and A. monticola re-evaluated. / Genome 2000, 43:449-51.
    4. Bennett MD, Bhandol P, Leitch IJ: Nuclear DNA amounts in angirosperms and their modern uses - 807 new estimates. / Ann Bot 2000, 86:859-09. CrossRef
    5. Sato S, Nakamura Y, Kaneko T, Asamizu E, Kato T, Nakao M, Sasamoto S, Watanabe A, Ono A, Kawashima K, Fujishiro T, Katoh M, Kohara M, Kishida Y, Minami C, Nakayama S, Nakazaki N, Shimizu Y, Shinpo S, Takahashi C, Wada T, Yamada M, Ohmido N, Hayashi M, Fukui K, Baba T, Nakamichi T, Mori H, Tabata S: Genome structure of the legume, Lotus japonicus. / DNA Res 2008, 15:227-39. CrossRef
    6. Schmutz J, Cannon SB, Schlueter J, Ma J, Mitros T, Nelson W, Hyten DL, Song Q, Thelen JJ, Cheng J, Xu D, Hellsten U, May GD, Yu Y, Sakurai T, Umezawa T, Bhattacharyya MK, Sandhu D, Valliyodan B, Lindquist E, Peto M, Grant D, Shu S, Goodstein D, Barry K, Futrell-Griggs M, Abernathy B, Du J, Tian Z, Zhu L, / et al.: Genome sequence of the palaeopolyploid soybean. / Nature 2010, 463:178-83. CrossRef
    7. Young ND, Debellé F, Oldroyd GE, Geurts R, Cannon SB, Udvardi MK, Benedito VA, Mayer KF, Gouzy J, Schoof H, Van de Peer Y, Proost S, Cook DR, Meyers BC, Spannagl M, Cheung F, De Mita S, Krishnakumar V, Gundlach H, Zhou S, Mudge J, Bharti AK, Murray JD, Naoumkina MA, Rosen B, Silverstein KA, Tang H, Rombauts S, Zhao PX, Zhou P, / et al.: The Medicago genome provides insight into the evolution of rhizobial symbioses. / Nature 2011, 480:520-24. CrossRef
    8. Varshney RK, Chen W, Li Y, Bharti AK, Saxena RK, Schlueter JA, Donoghue MT, Azam S, Fan G, Whaley AM, Farmer AD, Sheridan J, Iwata A, Tuteja R, Penmetsa RV, Wu W, Upadhyaya HD, Yang SP, Shah T, Saxena KB, Michael T, McCombie WR, Yang B, Zhang G, Yang H, Wang J, Spillane C, Cook DR, May GD, Xu X, / et al.: Draft genome sequence of pigeonpea (Cajanus cajan), an orphan legume crop of resource-poor farmers. / Nat Biotechnol 2012, 30:83-9. CrossRef
    9. Udall JA, Wendel JF: Polyploidy and crop improvement. / Crop Sci 2006, 46:S3-S14. CrossRef
    10. Hammons RO: The Groundnut Crop: A scientific basis for improvement. In / The origin and history of the groundnut. Edited by: Smartt J. Chapman and Hall, London; 1994:24-2.
    11. Koilkonda P, Sato S, Tabata S, Shirasawa K, Hirakawa H, Sakai H, Sasamoto S, Watanabe A, Wada T, Kishida Y, Tsuruoka H, Fujishiro T, Yamada M, Kohara M, Suzuki S, Hasegawa M, Kiyoshima H, Isobe S: Large-scale development of expressed sequence tag-derived simple sequence repeat markers and diversity analysis in Arachis spp. / Mol Breed 2011.
    12. Pandey MK, Monyo E, Ozias-Akins P, Liang X, Guimar?es P, Nigam SN, Upadhyaya HD, Janila P, Zhang X, Guo B, Cook DR, Bertioli DJ, Michelmore R, Varshney RK: Advances in Arachis genomics for peanut improvement. / Biotechnol Adv 2011, 30:639-51. CrossRef
    13. Burow MD, Simpson CE, Starr JL, Paterson AH: Transmission genetics of chromatin from a synthetic amphidiploid to cultivated peanut (Arachis hypogaea L.): broadening the gene pool of a monophyletic polyploid species. / Genetics 2001, 159:823-37.
    14. Halward T, Stalker HT, Kochert G: Development of an RFLP linkaeg map in diploid peanut species. / Theor Appl Genet 1993, 87:379-84. CrossRef
    15. Proite K, Leal-Bertioli SC, Bertioli DJ, Moretzsohn MC, da Silva FR, Martins NF, Guimar?es PM: ESTs from a wild Arachis species for gene discovery and marker development. / BMC Plant Biol 2007, 7:7. CrossRef
    16. Ferguson ME, Burow MD, Schulze SR, Bramel PJ, Paterson AH, Kresovich S, Mitchell S: Microsatellite identification and characterization in peanut (A. hypogaea L.). / Theor Appl Genet 2004, 108:1064-070. CrossRef
    17. He G, Meng R, Newman M, Gao G, Pittman RN, Prakash CS: Microsatellites as DNA markers in cultivated peanut (Arachis hypogaea L.). / BMC Plant Biol 2003, 3:3. CrossRef
    18. Moretzsohn MC, Hopkins MS, Mitchell SE, Kresovich S, Valls JF, Ferreira ME: Genetic diversity of peanut (Arachis hypogaea L.) and its wild relatives based on the analysis of hypervariable regions of the genome. / BMC Plant Biol 2004, 4:11. CrossRef
    19. Moretzsohn MC, Leoi L, Proite K, Guimaraes PM, Leal-Bertioli SC, Gimenes MA, Martins WS, Valls JF, Grattapaglia D, Bertioli DJ: A microsatellite-based, gene-rich linkage map for the AA genome of Arachis (Fabaceae). / Theor Appl Genet 2005, 111:1060-071. CrossRef
    20. Naito Y, Suzuki S, Iwata Y, Kuboyama T: Genetic diversity and relationship analysis of peanut germplasm using SSR markers. / Breed Sci 2008, 58:293-00. CrossRef
    21. Wang H, Penmetsa RV, Yuan M, Gong L, Zhao Y, Guo B, Farmer AD, Rosen BD, Gao J, Isobe S, Bertioli DJ, Varshney RK, Cook DR, He G: Development and characterization of BAC-end sequence derived SSRs, and their incorporation into a new higher density genetic map for cultivated peanut (Arachis hypogaea L.). / BMC Plant Biol 2012, 12:10. CrossRef
    22. Leal-Bertioli SC, Jose AC, Alves-Freitas DM, Moretzsohn MC, Guimaraes PM, Nielen S, Vidigal BS, Pereira RW, Pike J, Favero AP, Parniske M, Varshney RK, Bertioli DJ: Identification of candidate genome regions controlling disease resistance in Arachis. / BMC Plant Biol 2009, 9:112. CrossRef
    23. Moretzsohn MC, Barbosa AV, Alves-Freitas DM, Teixeira C, Leal-Bertioli SC, Guimar?es PM, Pereira RW, Lopes CR, Cavallari MM, Valls JF, Bertioli DJ, Gimenes MA: A linkage map for the B-genome of Arachis (Fabaceae) and its synteny to the A-genome. / BMC Plant Biol 2009, 9:40. CrossRef
    24. Khedikar YP, Gowda MV, Sarvamangala C, Patgar KV, Upadhyaya HD, Varshney RK: A QTL study on late leaf spot and rust revealed one major QTL for molecular breeding for rust resistance in groundnut (Arachis hypogaea L.). / Theor Appl Genet 2010, 121:971-84. CrossRef
    25. Varshney RK, Bertioli DJ, Moretzsohn MC, Vadez V, Krishnamurthy L, Aruna R, Nigam SN, Moss BJ, Seetha K, Ravi K, He G, Knapp SJ, Hoisington DA: The first SSR-based genetic linkage map for cultivated groundnut (Arachis hypogaea L). / Theor Appl Genet 2009, 118:729-39. CrossRef
    26. Ravi K, Vadez V, Isobe S, Mir RR, Guo Y, Nigam SN, Gowda MV, Radhakrishnan T, Bertioli DJ, Knapp SJ: Varshney RK:. Identification of several small main-effect QTLs and a large number of epistatic QTLs for drought tolerance related traits in groundnut (Arachis hypogaea L.). / Theor Appl Genet 2011, 122:1119-132. CrossRef
    27. Foncéka D, Hodo-Abalo T, Rivallan R, Faye I, Sall MN, Ndoye O, Fávero AP, Bertioli DJ, Glaszmann JC, Courtois B, Rami JF: Genetic mapping of wild introgressions into cultivated peanut: a way toward enlarging the genetic basis of a recent allotetraploid. / BMC Plant Biol 2009, 9:103. CrossRef
    28. Gautami B, Pandey MK, Vadez V, Nigam SN, Ratnakumar P, Krishnamurthy L, Radhakrishnan T, Gowda MVC, Narasu ML, Hoisington DA, Knapp SJ, Varshney RK: Quantitative trait locus analysis and construction of consensus genetic map for drought tolerance traits based on three recombinant inbred line populations in cultivated groundnut (Arachis hypogaea L.). / Mol Breed 2011.
    29. Hong Y, Chen X, Liang X, Liu H, Zhou G, Li S, Wen S, Holbrook CC, Guo B: A SSR-based composite genetic linkage map for the cultivated peanut (Arachis hypogaea L.) genome. / BMC Plant Biol 2010, 10:17. CrossRef
    30. Qin H, Feng S, Chen C, Guo Y, Knapp S, Culbreath A, He G, Wang ML, Zhang X, Holbrook CC, Ozias-Akins P, Guo B: An integrated genetic linkage map of cultivated peanut (Arachis hypogaea L.) constructed from two RIL populations. / Theor Appl Genet 2011, 124:653-64. CrossRef
    31. Sujay V, Gowda MVC, Pandey MK, Bhat RS, Khedikar YP, Nadaf HL, Gautami B, Sarvamangala C, Lingaraju S, Radhakrishan T, Knapp SJ, Varshney RK: Quantitative trait locus analysis and construction of consensus genetic map for foliar disease resistance based on two recombinant inbred line populations in cultivated groundnut (Arachis hypogaea L.). / Mol Breed 2011.
    32. Tang J, Baldwin SJ, Jacobs JM, Linden CG, Voorrips RE, Leunissen JA, van Eck H, Vosman B: Large-scale identification of polymorphic microsatellites using an in silico approach. / BMC Bioinformatics 2008, 9:374. CrossRef
    33. SSRPoly: [http://acpfg.imb.uq.edu.au/ssrpoly.php] / an efficient tool for polymorphic Simple Sequence Repeat identification.
    34. Shirasawa K, Hirakawa H, Tabata S, Hasegawa M, Kiyoshima H, Suzuki S, Sasamoto S, Watanabe A, Fujishiro T, Isobe S: Characterization of active miniature inverted-repeat transposable elements in the peanut genome. / Theor Appl Genet 2012, 124:1429-438. CrossRef
    35. Pandey MK, Gautami B, Jayakumar T, Sriswathi M, Upadhyaya HD, Gowda MVC, Radhakrishnan T, Bertioli DJ, Knapp SJ, Cook DR, Varshney RK: Highly informative genic and genomic SSR markers to facilitate molecular breeding in cultivated groundnut (Arachis hypogaea). / Plant Breed 2012, 131:139-47. CrossRef
    36. Holbrook CC, Stalker HT: Plant Breeding Reviews. Volume 22. In / Peanut breeding and genetic resources. Edited by: Janick J. John Willey and Sons, New York; 2003:297-56.
    37. Moore KM, Knauft DA: The inheritance of high oleic acid in peanut. / J Hered 1989, 80:252-53.
    38. Norden AJ, Gorbet DW, Knauft DA, Young CT: Variability in oil quality among peanut genotypes in the Florida breeding program. / Peanut Sci 1987, 14:7-1. CrossRef
    39. Grundy SM: Comparison of monounsaturated fatty acids and carbohydrates for lowering plasma cholesterol. / N Engl J Med 1986, 314:745-48. CrossRef
    40. Clemente TE, Cahoon EB: Soybean oil: genetic approaches for modification of functionality and total content. / Plant Physiol 2009, 151:1030-040. CrossRef
    41. Garces R, Mancha M: In vitro oleate desaturase in developing sunflower seeds. / Phytochemistry 1991, 30:2127-130. CrossRef
    42. Lee MS, Guerra DJ: Biochemical characterization of temperature-induced changes in lipid metabolism in a high oleic acid mutant of Brassica rapa. / Arch Biochem Biophys 1994, 315:203-11. CrossRef
    43. Martin BA, Rinne RW: A comparison of oleic acid metabolism in the soybean (Glycine max [L.] Merr.) genotypes Williams and A5, a mutant with decreased linoleic acid in the seed. / Plant Physiol 1986, 81:41-4. CrossRef
    44. Barkley NA, Chenault KD, Chamberlin C, Wang ML, Pittman RN: Development of a real-time PCR genotyping assay to identify high oleic acid peanuts (Arachis hypogaea L.). / Mol Breed 2010, 25:541-48. CrossRef
    45. Bruner AC, Jung S, Abbott AG, Powell GL: The naturally occurring high oleate oil character in some peanut varieties results from reduced oleoyl-PC desaturase activity from mutation of aspartate 150 to asparagine. / Crop Sci 2001, 41:522-26. CrossRef
    46. Chu Y, Holbrook C, Ozias-Akins P: Two alleles of ahFAD2B control the high oleic acid trait in cultivated peanut. / Crop Sci 2009, 49:2029-036. CrossRef
    47. López Y, Nadaf HL, Smith OD, Connell JP, Reddy AS, Fritz AK: Isolation and characterization of the Δ12-fatty acid desaturase in peanut (Arachis hypogaea L.) and search for polymorphisms for the high oleate trait in Spanish market-type lines. / Theor Appl Genet 2000, 101:1131-138. CrossRef
    48. López Y, Nadaf HL, Smith OD, Simpson CE, Fritz AK: Expressed variants of Δ12-fatty acid desaturase for the high oleate trait in spanish market-type peanut lines. / Mol Breed 2002, 9:183-90. CrossRef
    49. Patel M, Jung S, Moore K, Powell G, Ainsworth C, Abbott A: High-oleate peanut mutants result from a MITE insertion into the FAD2 gene. / Theor Appl Genet 2004, 108:1492-502. CrossRef
    50. Nunome T, Negoro S, Miyatake K, Yamaguchi H, Fukuoka H: A protocol for the construction of microsatellite enriched genomic library. / Plant Mol Biol Rep 2006, 24:305-12. CrossRef
    51. Sraphet S, Boonchanawiwat A, Thanyasiriwat T, Boonseng O, Tabata S, Sasamoto S, Shirasawa K, Isobe S, Lightfoot DA, Tangphatsornruang S, Triwitayakorn K: SSR and EST-SSR-based genetic linkage map of cassava (Manihot esculenta Crantz). / Theor Appl Genet 2011, 122:1161-170. CrossRef
    52. Rice P, Longden I, Bleasby A: EMBOSS: the European Molecular Biology Open Software Suite. / Trends Genet 2000, 16:276-77. CrossRef
    53. Huang X, Madan A: CAP3: a DNA sequence assembly program. / Genome Res 1999, 9:868-77. CrossRef
    54. Rozen S, Skaletsky H: Primer3 on the WWW for general users and for biologist programmers. / Methods Mol Biol 2000, 132:365-86.
    55. Guimar?es PM, Garsmeur O, Proite K, Leal-Bertioli SC, Seijo G, Chaine C, Bertioli DJ, D'Hont A: BAC libraries construction from the ancestral diploid genomes of the allotetraploid cultivated peanut. / BMC Plant Biol 2008, 8:14. CrossRef
    56. Jung S, Powell G, Moore K, Abbott A: The high oleate trait in the cultivated peanut [Arachis hypogaea L]. / II. Molecular basis and genetics of the trait. Mol Gen Genet 2000, 263:806-11.
    57. Jung S, Swift D, Sengoku E, Patel M, Teule F, Powell G, Moore K, Abbott A: The high oleate trait in the cultivated peanut [Arachis hypogaea L.]. I. Isolation and characterization of two genes encoding microsomal oleoyl-PC desaturases. / Mol Gen Genet 2000, 263:796-05. CrossRef
    58. Van Ooijen JW: / JoinMap?4, software for the calculation of genetic linkage maps in experimental populations. Kyazma BV, Wageningen, Netherlands; 2006.
    59. Voorrips RE: MapChart: software for the graphical presentation of linkage maps and QTLs. / J Hered 2002, 93:77-8. CrossRef
    60. Wang S, Basten CJ, Zeng ZB: / Windows QTL cartographer 2.5. , Raleigh, NC: Department of Sraristics, North Carolina State University; 2011.
    61. Isobe S, Nakaya A, Tabata S: Genotype matrix mapping: searching for quantitative trait loci interactions in genetic variation in complex traits. / DNA Res 2007, 14:217-25. CrossRef
    62. [http://marker.kazusa.or.jp] / Kazusa DNA Marker Database. , ; .
    63. Liu B, Watanabe S, Uchiyama T, Kong F, Kanazawa A, Xia Z, Nagamatsu A, Arai M, Yamada T, Kitamura K, Masuta C, Harada K, Abe J: The soybean stem growth habit gene Dt1 is an ortholog of Arabidopsis TERMINAL FLOWER1. / Plant Physiol 2010, 153:198-10. CrossRef
    64. Suzuki M, Fujino K, Nakamoto Y, Ishimoto M, Funatsuki H: Fine mapping and development of DNA markers for the qPDH1 locus associated with pod dehiscence in soybean. / Mol Breed 2010, 25:407-18. CrossRef
    65. Watanabe S, Hideshima R, Xia Z, Tsubokura Y, Sato S, Nakamoto Y, Yamanaka N, Takahashi R, Ishimoto M, Anai T, Tabata S, Harada K: Map-based cloning of the gene associated with the soybean maturity locus E3. / Genetics 2009, 182:1251-262. CrossRef
    66. Watanabe S, Xia Z, Hideshima R, Tsubokura Y, Sato S, Yamanaka N, Takahashi R, Anai T, Tabata S, Kitamura K, Harada K: A map-based cloning strategy employing a residual heterozygous line reveals that the GIGANTEA gene is involved in soybean maturity and flowering. / Genetics 2011, 188:395-07. CrossRef
    67. Gondo T, Sato S, Okumura K, Tabata S, Akashi R, Isobe S: Quantitative trait locus analysis of multiple agronomic traits in the model legume Lotus japonicus. / Genome 2007, 50:627-37. CrossRef
  • 作者单位:Kenta Shirasawa (1)
    Padmalatha Koilkonda (1)
    Koh Aoki (1) (6)
    Hideki Hirakawa (1)
    Satoshi Tabata (1)
    Manabu Watanabe (2)
    Makoto Hasegawa (2)
    Hiroyuki Kiyoshima (2)
    Shigeru Suzuki (2)
    Chikara Kuwata (2)
    Yoshiki Naito (3)
    Tsutomu Kuboyama (4)
    Akihiro Nakaya (5)
    Shigemi Sasamoto (1)
    Akiko Watanabe (1)
    Midori Kato (1)
    Kumiko Kawashima (1)
    Yoshie Kishida (1)
    Mitsuyo Kohara (1)
    Atsushi Kurabayashi (1)
    Chika Takahashi (1)
    Hisano Tsuruoka (1)
    Tsuyuko Wada (1)
    Sachiko Isobe (1)

    1. Kazusa DNA Research Institute, 2-6-7 Kazusa-Kamatari, Kisarazu, Chiba, 292-0818, Japan
    6. Graduate School of Life & Environmental Sciences, Osaka Prefecture University, 1-1 Gakuencho, Naka, Sakai, Osaka, 599-8531, Japan
    2. Chiba Prefectural Agriculture and Forestry Research Center, 808 Daizennocho, Midori, Chiba, 266-0006, Japan
    3. Mitsubishi Chemical Medience Corporation, 4-25-11 Azusawa, Itabashi, Tokyo, 174-0051, Japan
    4. College of Agriculture, Ibaraki University, 3-21-1 Chuo, Ami, Ibaraki, 300-0393, Japan
    5. Center for Transdisciplinary Research, Niigata University, 1-757 Asahimachidori, Chuo, Niigata, 951-8585, Japan
文摘
Background Peanut (Arachis hypogaea) is an autogamous allotetraploid legume (2n--x--0) that is widely cultivated as a food and oil crop. More than 6,000 DNA markers have been developed in Arachis spp., but high-density linkage maps useful for genetics, genomics, and breeding have not been constructed due to extremely low genetic diversity. Polymorphic marker loci are useful for the construction of such high-density linkage maps. The present study used in silico analysis to develop simple sequence repeat-based and transposon-based markers. Results The use of in silico analysis increased the efficiency of polymorphic marker development by more than 3-fold. In total, 926 (34.2%) of 2,702 markers showed polymorphisms between parental lines of the mapping population. Linkage analysis of the 926 markers along with 253 polymorphic markers selected from 4,449 published markers generated 21 linkage groups covering 2,166.4?cM with 1,114 loci. Based on the map thus produced, 23 quantitative trait loci (QTLs) for 15 agronomical traits were detected. Another linkage map with 326 loci was also constructed and revealed a relationship between the genotypes of the FAD2 genes and the ratio of oleic/linoleic acid in peanut seed. Conclusions In silico analysis of polymorphisms increased the efficiency of polymorphic marker development, and contributed to the construction of high-density linkage maps in cultivated peanut. The resultant maps were applicable to QTL analysis. Marker subsets and linkage maps developed in this study should be useful for genetics, genomics, and breeding in Arachis. The data are available at the Kazusa DNA Marker Database (http://marker.kazusa.or.jp).

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700