用户名: 密码: 验证码:
Discrete element simulations of direct shear tests with particle angularity effect
详细信息    查看全文
  • 作者:Shiwei Zhao ; Xiaowen Zhou ; Wenhui Liu
  • 关键词:Discrete elements ; Direct shear tests ; Polyhedral particles ; Micromechanics ; Angularity ; Anisotropy
  • 刊名:Granular Matter
  • 出版年:2015
  • 出版时间:December 2015
  • 年:2015
  • 卷:17
  • 期:6
  • 页码:793-806
  • 全文大小:6,842 KB
  • 参考文献:1.Cundall, P.A., Strack, O.D.L.: A discrete numerical model for granular assemblies. G茅otechnique 29(1), 47鈥?5 (1979)CrossRef
    2.Zhu, H.P., Zhou, Z.Y., Yang, R.Y., Yu, A.B.: Discrete particle simulation of particulate systems: a review of major applications and findings. Chem. Eng. Sci. 63(23), 5728鈥?770 (2008)CrossRef
    3.Iwashita, K., Oda, M.: Micro-deformation mechanism of shear banding process based on modified distinct element method. Powder Technol. 109, 192鈥?05 (2000)CrossRef
    4.Jiang, M.J., Yu, H.S., Harris, D.: A novel discrete model for granular material incorporating rolling resistance. Comput. Geotech. 32, 340鈥?57 (2005)CrossRef
    5.Wegner, S., Stannarius, R., Boese, A., Rose, G., Szabo, B., Somfai, E., Borzsonyi, T.: Effects of grain shape on packing and dilatancy of sheared granular materials. Soft Matter (10), 5157鈥?167 (2014). doi:10.鈥?039/鈥婥4SM00838C
    6.Nouguier-Lehon, C., Cambou, B., Vincens, E.: Influence of particle shape and angularity on the behaviour of granular materials: a numerical analysis. Int. J. Numer. Anal. Methods Geomech. 27(14), 1207鈥?226 (2003)MATH CrossRef
    7.Cho, G.C., Dodds, J., Santamarina, J.C.: Particle shape effects on packing density, stiffness, and strength: natural and crushed sands. J. Geotech. Geoenviron. Eng. 132(5), 591鈥?02 (2006)CrossRef
    8.Athanassiadis, A.G., Miskin, M.Z., Kaplan, P., Rodenberg, N., Lee, S.H., Merritt, J., Brown, E., Amend, J., Lipson, H., Jaeger, H.M.: Particle shape effects on the stress response of granular packings. Soft Matter 10(1), 48鈥?9 (2013)CrossRef ADS
    9.John, M.T., Larry, M., Jeffrey, D.R.: Effect of particle shape on the strength and deformation mechanisms of ellipse-shaped granular assemblages. Eng. Comput. 12(2), 99鈥?08 (1995)CrossRef
    10.Tillemans, H.J., Herrmann, H.J.: Simulating deformations of granular solids under shear. Phys. A 217, 261鈥?88 (1995)CrossRef
    11.Hosseininia, E.S.: Investigating the micromechanical evolutions within inherently anisotropic granular materials using discrete element method. Granul. Matter 14(4), 483鈥?03 (2012)CrossRef
    12.Alonso-Marroqu铆n, F.: Spheropolygons: a new method to simulate conservative and dissipative interactions between 2D complex-shaped rigid bodies. Europhys. Lett. 83, 14001 (2008)CrossRef ADS
    13.Maeda, K., Sakai, H., Kondo, A., Yamaguchi, T., Fukuma, M., Nukudani, E.: Stress-chain based micromechanics of sand with grain shape effect. Granul. Matter 12(5), 499鈥?05 (2010)MATH CrossRef
    14.Ng, T.T.: Particle shape effect on macro- and micro-behaviors of monodisperse ellipsoids. Int. J. Numer. Anal. Methods Geomech. 33(4), 511鈥?27 (2009)MATH CrossRef
    15.H盲rtl, J., Ooi, J.Y.: Numerical investigation of particle shape and particle friction on limiting bulk friction in direct shear tests and comparison with experiments. Powder Technol. 212(1), 231鈥?39 (2011)CrossRef
    16.Pournin, L., Weber, M., Tsukahara, M., Ferrez, J.-A., Ramaioli, M., Liebling, ThM: Three-dimensional distinct element simulation of spherocylinder crystallization. Granul. Matter 7(2鈥?), 119鈥?26 (2005)MATH CrossRef
    17.Cleary, P.: DEM prediction of industrial and geophysical particle flows. Particuology 8(2), 106鈥?18 (2010)CrossRef
    18.Kozicki, J., Tejchman, J., Mr贸z, Z.: Effect of grain roughness on strength, volume changes, elastic and dissipated energies during quasi-static homogeneous triaxial compression using DEM. Granul. Matter 14(4), 457鈥?68 (2012)CrossRef
    19.Shamsi, M.M., Mirghasemi, A.: Numerical simulation of 3D semi-real-shaped granular particle assembly. Powder Technol. 221, 431鈥?46 (2012)CrossRef
    20.Indraratna, B., Ngo, N., Rujikiatkamjorn, C., Vinod, J.: Behavior of fresh and fouled railway ballast subjected to direct shear testing: discrete element simulation. Int. J. Geomech. 14(1), 34鈥?4 (2014)CrossRef
    21.Bagherzadeh-Khalkhali, A., Mirghasemi, A.A.: Numerical and experimental direct shear tests for coarse-grained soils. Particuology 7(1), 83鈥?1 (2009)CrossRef
    22.Wang, J., Gutierrez, M.: Discrete element simulations of direct shear specimen scale effects. G茅otechnique 60(5), 395鈥?09 (2010)CrossRef
    23.Kozicki, J., Donz茅, F.V.: Yade-open DEM: an open-source software using a discrete element method to simulate granular material. Eng. Comput. 26(7), 786鈥?05 (2009)
    24.Van Den Bergen, G.: Efficient collision detection of complex deformable models using AABB trees. J. Graph. Tools 2(4), 1鈥?3 (1997)
    25.Chen, J., Schinner, A., Matuttis, H.-G.: Discrete element simulation for polyhedral granular particles. Theor. Appl. Mech. Jpn 59, 335鈥?46 (2010)
    26.Nassauer, B., Liedke, T., Kuna, M.: Polyhedral particles for the discrete element method. Granul. Matter 15(1), 85鈥?3 (2013)CrossRef
    27.Nassauer, B., Kuna, M.: Contact forces of polyhedral particles in discrete element method. Granul. Matter 15(3), 349鈥?55 (2013)CrossRef
    28.Eli谩拧, J.: Simulation of railway ballast using crushable polyhedral particles. Powder Technol. 264, 458鈥?65 (2014)CrossRef
    29.Mack, S., Langston, P., Webb, C., York, T.: Experimental validation of polyhedral discrete element model. Powder Technol. 214(3), 431鈥?42 (2011)CrossRef
    30.Muller, D.E., Preparata, F.P.: Finding the intersection of two convex polyhedra. Theor. Comput. Sci. 7(2), 217鈥?36 (1978)MATH MathSciNet CrossRef
    31.G眉nther, O., Wong, E.: A dual approach to detect polyhedral intersections in arbitrary dimensions. BIT Numer. Math. 31(1), 2鈥?4 (1991)MATH CrossRef
    32.Lee, S.J., Hashash, Y.M.A., Nezami, E.G.: Simulation of triaxial compression tests with polyhedral discrete elements. Comput. Geotech. 43, 92鈥?00 (2012)CrossRef
    33.Itasca Consulting Group: Particle Flow Code in Three Dimensions (PFC\(^{3D}\) ). Minneapolis (2008)
    34.Baker, J., Kudrolli, A.: Maximum and minimum stable random packings of platonic solids. Phys. Rev. E 82(6), 061304 (2010)MathSciNet CrossRef ADS
    35.Alonso, J.J., Herrmann, H.J.: Shape of the tail of a two-dimensional sandpile. Phys. Rev. Lett. 76(26), 4911鈥?914 (1996)CrossRef ADS
    36.Krengel, D., Cheng, W.S., Chen, J., Matuttis, H.-G.: The effect of the shape of granular particles on density. J. Phys. Soc. Jpn. 84, 064401 (2015)CrossRef ADS
    37.Zhao, X., Evans, T.M.: Numerical analysis of critical state behaviors of granular soils under different loading conditions. Granul. Matter 13(6), 751鈥?64 (2011)CrossRef
    38.Antony, S.J.: Evolution of force distribution in three-dimensional granular media. Phys. Rev. E 63(1), 011302 (2000)CrossRef ADS
    39.Thornton, C.: Numerical simulations of deviatoric shear deformation of granular media. G茅otechnique 50(1), 43鈥?3 (2000)MathSciNet CrossRef
    40.Yang, Z.X., Li, X.S., Yang, J.: Quantifying and modelling fabric anisotropy of granular soils. G茅otechnique 58(4), 237鈥?48 (2008)CrossRef
    41.Az茅ma, E., Radjai, F., Saussine, G.: Quasistatic rheology, force transmission and fabric properties of a packing of irregular polyhedral particles. Mech. Mater. 41(6), 729鈥?41 (2009)CrossRef
    42.Arthur, J.R.F., Menzies, B.K.: Inherent anisotropy in a sand. G茅otechnique 22(1), 115鈥?28 (1972)CrossRef
    43.Alonso-Marroqu铆n, F., Luding, S., Herrmann, H., Vardoulakis, I.: Role of anisotropy in the elastoplastic response of a polygonal packing. Phys. Rev. E 71(5), 051304 (2005)CrossRef ADS
    44.Satake, M.: Fabric tensor in granular materials. In: Proceedings of the IUTAM Symposium on Deformation and Failure of Granular Materials, Delft, pp. 63鈥?7 (1982)
    45.Barreto, D., O鈥橲ullivan, C., Zdravkovic, L.: Quantifying the evolution of soil fabric under different stress paths. In: Proceedings of the 6th International Conference on Micromechanics of Granular Media (Powders and Grains 2009), pp. 181鈥?84 (2009)
  • 作者单位:Shiwei Zhao (1)
    Xiaowen Zhou (2) (3)
    Wenhui Liu (1)

    1. School of Civil Engineering and Transportation, South China University of Technology, Guangzhou, 510640, China
    2. State Key Laboratory of Subtropical Building Science, South China University of Technology, Guangzhou, 510640, China
    3. POWERCHINA Huadong Engineering Corporation Limited, Hangzhou, 310014, China
  • 刊物类别:Physics and Astronomy
  • 刊物主题:Physics
    Granular Media
    Industrial Chemistry and Chemical Engineering
    Engineering Fluid Dynamics
    Structural Foundations and Hydraulic Engineering
    Engineering Thermodynamics and Transport Phenomena
  • 出版者:Springer Berlin / Heidelberg
  • ISSN:1434-7636
文摘
This paper investigated the effect of the particle angularity in light of its importance in angular particle assemblies, using the discrete element method (DEM). A discrete element model with a general contact force law for arbitrarily shaped particles was developed, in which angular particles were modeled using convex polyhedra. Quasi-spherical polyhedral shapes with different vertexes were adopted to reflect the change of angularity. Four categories of assemblies with different angularities were generated. A series of direct shear tests performed on these assemblies were simulated at different vertical stresses. All numerical implementations were achieved using a modified version of the open source DEM code YADE. It was found that the macroscopic shear strength and dilatancy characteristics are in agreement with experimental and numerical results in the literature, indicating that the present numerical model is reasonable. Besides, the evolutions of coordination number, normal contact force distribution, and anisotropies of particle orientation and contact normal were investigated. The results show that the angularity plays a vital role in strengthening the interlocking of angular particles. Keywords Discrete elements Direct shear tests Polyhedral particles Micromechanics Angularity Anisotropy

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700